VHDL

Prof. James L. Frankel
Harvard University

Version of 2:46 PM 10-Dec-2024
Copyright © 2024, 2023, 2021, 2020, 2019, 2017, 2016 James L. Frankel. All rights reserved.

Introduction

 VHDL is a Hardware Description Language
e VHSIC HDL: Very High Speed Integrated Circuit Hardware Description Language
* Used both for synthesis and simulation

e Synthesis is using the VHDL program to create a device such as the
programming for an FPGA

e Simulation is using the VHDL program to run a model of how that program
behaves — this can include timing simulation

* We will be using VHDL primarily for synthesis

* Not all VHDL language features are appropriate for both synthesis and
simulation

VHDL Mindset

 When writing code in VHDL, do not think of the code as a traditional
program that runs sequentially

* Think of the VHDL code as being a description of a circuit composed of
Boolean gates

* The consequences of this mindset is that all circuits (i.e., all code) are
active (or, if you prefer, running) in parallel

Entity Declaration

* Declares the interface to an entity
* Only inputs and output to an entity should appear in the entity declaration
* The entity declaration is somewhat similar to the parameters to and return value from a function/procedure

* Example:

entity buttonFunctions 1is
port (pbl, pb2: in bit;
ledl, led2: out bit);
end entity buttonFunctions;

* Details
* buttonFunctions is the entity’s name
* pbland pb2 and inputs to the entity — specified by the keyword in
* ledl and led2 are outputs from the entity — specified by the keyword out
e bitis a built-in data type that can have values '0' and '1'

Entity Buffer Port

* In addition to in and out, buffer can be specified
* A buffer is an output that can also be read in your code

Notes about DE2 LEDs

* Individual LEDs are illuminated when driven with a high signal
* Look in the DE2-115 User Manual for pin assignments

* For example, the leftmost red LED is LEDR17...

* In the DE2-115, it is FPGA pin number PIN_H15 (see pages 34-36, PDF pages
35-37)

Notes about DE2 Pushbuttons

* The pughbuttons (KEY3 through KEYO) normally output a high signal when not
presse

 When pressed, the pushbuttons output a low signal
e This is referred to active low

* The pushbuttons are debounced
* But, we have found that the pushbuttons are not completely debounced

* Look in the DE2-115 User Manual for pin assignments

* For example, the leftmost pushbutton is KEY3...

* Inthe DE2-115, it is FPGA pin number PIN_R24 (see page 35, PDF page 36)

Architecture Description

* Describes the implementation of an entity

* Example:

architecture dataflow of buttonFunctions is
begin

ledl <= (not pbl) and (not pb2);

led?2 <= (not pbl) or (not pb2);
end architecture dataflow;

e Details

* dataflow is the architecture’s name

* |tis bound to the entity name — therefore, it can be used for each architecture for different entities

* More than one architecture may be given for one entity

* The architecture name is intended to indicate the approach taken in that implementation of the entity
* <=jsthe symbol used in a simple assignment statement
* and, or, and not are logical operators

Creating a Complete VHDL Program
buttonfunctions.vhd

* Combine the entity declaration with the architecture description
entity buttonFunctions is
port (pbl, pb2: in bit;
ledl, led2: out bit);
end entity buttonFunctions;

-— The pushbuttons are active-low (i.e., the signals are normally high and
become low when the pushbuttons are pressed). They *are* debounced.

—-— The individual LEDs are illuminated when driven with a high signal.

—-— Assign pins as follows on the DE2-115:

- Signal Pin Device

-- ledl PIN H15 LEDR17 leftmost red LED

- led?2 PIN G1l6 LEDR16 second to leftmost red LED
- pbl PIN R24 KEY3 leftmost pushbutton

- pb2 PIN N21 KEY2 second to leftmost pushbutton

architecture dataflow of buttonFunctions is
begin

ledl <= (not pbl) and (not pb2);

led2 <= (not pbl) or (not pb2);
end architecture dataflow;

* Details
* The double hyphen denotes a comment

Using the Altera/Terasic Hardware

e Attach AC power cable to power supply
e Attach power supply to the Altera DE2 board at the DC 12V connector

e Attach USB cable from the Altera DE2 board BLASTER jack to your
computer

* Power on the Altera DE2 board by pushing the red button labelled POWER
or POWER/SW

* The Altera DE2 should start counting on all the seven-segment displays,
flashing the red and green individual LEDs, and displaying a welcome
message on the LCD display

* Pressing the rightmost pushbutton labelled KEYO should display
all 8s without decimal
points on the DE2-115 on the seven-segment displays

Using Quartus Prime Lite Edition

* Ensure that you are using Quartus Prime Lite Edition, Release 20.1.1

* Create a new directory for each project
* Name the directory with the same as the project name
* This will segregate all files being used for this project

* If you have already created a source VHDL file (with extension .vhd),
copy it into the new directory

* Name the VHDL source file with the same name as the project

 Launch Quartus Prime Lite Edition

Create a New Project (1 of 6)

 Select File > New Project Wizard...
* |In the pop-up Introduction window, select Next
* In the New Project Wizard window, click on Next

* |[n the Directory, Name, Top-Level Entity window...

* Navigate to the working directory that you just created for this project and select it
Enter the name of the project
The top-level entity name by default will be the same as the project name

Click on Next

Or, if you have already created an existing project with the same settings, click on
Use Existing Project Settings...

* Optionally select Copy settings from specified project as default settings

* Navigate to the specified or last opened project’s .qpf (project) file

Create a New Project (2 of 6)

* In the Project Type window...

* Ensure that Empty project is selected
* Click on Next

Create a New Project (3 of 6)

* In the Add Files window...

* If you have already added VHDL source files into this directory, click on Add
All

* Your VHDL files should now appear in the list
* Click on Next

Create a New Project (4 of 6)

* In the Family, Device & Board Settings window...

e For the DE2-115...

* Under Device family, select Cyclone IV E

* |n the Available Devices list, select EPACE115F29C7
* Verify that this is the FPGA part number installed in your DE2 board
* EP4CE115F29C7N should be entered as EP4ACE115F29C7

* The appropriate device should be highlighted
* Click on Next

Create a New Project (5 of 6)

* In the EDA Tool Settings window...
e Under Design Entry/Synthesis, enter Tool Name: Custom, Format(s): VHDL
e Under Simulation, enter Tool Name: ModelSim-Altera, Format(s): VHDL
Under Board-Level, Tool Name: Timing, enter STAMP
Under Board-Level, Tool Name: Symbol, enter FPGA Xchange
Under Board-Level, Tool Name: Signal Integrity,

e Enter HSPICE for the DE2-115
Under Board-Level, Tool Name: Boundary Scan, enter BSDL
Click on Next

Create a New Project (6 of 6)

* In the Summary window...
 Verify that everything was correctly entered
* Once all choices are correct, click on Finish

Set Project Options

* Under Assignments = Settings... =
(in the upper right) Device/Board... - Device and Pin Options... 2
Unused Pins, under Reserve all unused pins:, select As input tri-
stated

* Click on OK in the Device and Pin Options window
* Click on OK in the Device window

* Click on OK in the Settings window

Build the Project

* Under Processing, select Start Compilation

* Wait until the entire compilation is complete

* In the lowest Processing pane, a line will appear with the text
Quartus Prime Full Compilation was successful. 0 errors, n warnings

* Before attempting to use the compiled project, pin assignments need
to be made

Make Pin Assignments

* Under Assignments = Pin Planner, you should see all node names that are
listing in your entity interface

* On the lower half of that panel, in the Location column, change the
assignments to the correct pins that you require by using the drop-down
list

* Close the Pin Planner windows by clicking on X in the upper right corner

* Recompile your project by clicking on Processing - Start Compilation

* |f you now look at the pin assignments made by the Fitter, they should be
the same as those that you entered

Program the Hardware with your Design

* Ensure t)hat the slide switch on the left side of the DE2 is in the RUN position (not in the PROG
position

* Select Tools - Programmer, to program the hardware

* In the Programmer window that opens, the Hardware Setup... should show USB-Blaster selected
and the Mode should be JTAG

* The appropriate .sof file should already be shown under File

* |If the appropriate .sof file is not already shown under File, click on Add File... and in the Select Programming
File, click on the output_files subdirectory and select the appropriate .sof file and click on Open

* Back in the Programmer window, ensure that Program/Configure check box is checked

* Click on Start
* The Progress bar should show the programming progress
* Finally, the Progress bar should show 100% (Successful) in green

* Your design should be loaded into the FPGA and is currently active

* If you see unassigned LEDs partially illuminated, you probably forgot to Reserve all unused pins:
As input tri-stated

Quick DE2 Kit Information

* Review: Individual LEDs are illuminated when driven by a high signal

* Segments of the seven-segment LEDs are illuminated when driven by
a low signal

* Review: The four pushbutton switches are debounced and are active
low (they output a low signal when depressed)

 The slide switches are not debounced

Alternate Way to Set Pin Assignments

* Instead of using the Pin Planner in Quartus Prime, it is possible to specify pin assignments in your VHDL file (see
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhd| file dir chip.htm) using the chip_pin synthesis attribute

* The architecture specification should include code similar to the following (see buttonfunctionspinassign.vhd):

entity buttonFunctionsPinAssign is
port (pbl, pb2: in bit;
ledl, led2: out bit);
end entity buttonFunctionsPinAssign;

-- Assign pins as follows on the DE2-115:

- Signal Pin Device

-— ledl PIN H15 LEDR17 leftmost red LED

-= led?2 PIN Gl6 LEDR16 second to leftmost red LED
- pbl PIN R24 KEY3 leftmost pushbutton

- pb2 PIN N21 KEY2 second to leftmost pushbutton

architecture dataflow of buttonFunctionsPinAssign is
attribute chip pin: string;
attribute chip pin of ledl: signal is "H15";
attribute chip pin of led2: signal is "G16";
attribute chip pin of pbl: signal is "R24";
attribute chip pin of pb2: signal is "N21";

begin -
ledl <= (not pbl) and (not pb2);
led2 <= (not pbl) or (not pb2);

end architecture dataflow;

* This technique can be used to assign pins for only the ports of the top-level entity
e Of course, a signal can be assigned and thereby used by (“passed to”) a lower-level entity
* All signals that are connected outside the FPGA (i.e., to LEDs, 7-segment displays, pushbuttons, slide switches, etc.) should appear as ports of the top-level entity

* Additionally, this attribute can be used only with single bit or one-dimensional signals

23

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_chip.htm

Operators

Highest Miscellaneous ** (exponentiation), abs, not
Multiplying * /, mod, rem
Sign (Unary Numeric) +, —
Adding +, —, & (concatenation)
Shift sll, srl, sla, sra, rol, ror
Relational =, /=, <, <=, >, >=

Lowest Logical and, or, nand, nor, xor, xnor

e Within any one precedence level, operators are evaluated from left to right

* Of course, parentheses may be used to change order of evaluation

24

More Specific Information of VHDL

* The IEEE Standard VHDL Language Reference Manual is IEEE Std 1076-
2008, but is quite expensive

* Our textbook, The Designer’s Guide to VHDL, Third Edition by Peter J.
Ashenden contains the same information in a more accessible form

» Refer to these documents for more specific information on VHDL

Simple Signal Assignment Syntax

* Types of target and waveform must be the same
e Sets a signal to a value
* That assignment happens always

target <= waveform ;

* Example above is

ledl <= (not pbl) and (not pb2);
led2 <= (not pbl) or (not pb2);

Concurrent Assignment Statements

* Simple assignment
* We've already seen this

* Selected signal assignment
* Conditional signal assighment

Selected Signhal Assignment

* Set a signal to one of several alternatives

* The when clauses must cover all possibilities
* The keyword others may be used for this purpose

with expression select _
target <= { waveform when choices, }
waveform when choices ;

o {<contents>} means zero or more repetitions of <contents>
* Example of multiplexer implementation

with Sel select
Q <= Awhen '1},
B when others;

Conditional Signal Assignment

* Set a signal to one of several alternatives

e Conditions need not be mutually exclusive
* The earlier clauses have higher priority

target <= waveform when condition
else waveform when condition }
else waveformJ ;

o {<contents> } means zero or more repetitions of <contents>
o [<contents>] means that <contents> is optional

* Example of multiplexer implementation

Q<= é when Sel ='1 else

Concurrent Assignment Ordering

* Ordering of concurrent assignment statements does not matter
* Their operations are always taking place

Processes

* The process statement is used to delimit a process

* Description
* Within a process there may be more than one statement

* The process becomes active when there is a change to one or more of the signals
listed in the process’ sensitivity list

. Or:jce active, the statements within the process appear to be evaluated in sequential
order

* Assignments to signals within the process are not visible outside the process until all
of the statements in the process have been evaluated

* If there is more than one assignment to the same signal, only the last assignment is
externally visible

e Certain statements may appear only within a process
* Processes may not be nested

Process Syntax

* Use a process to introduce a block of sequential statements
* Sequential statements are executed in the order they appear in the program
e Sequential statements must appear within a process

| process_label : |

process [(signal_name {,..}) | (all)][is]
{ process_declarative item }

begin
{ sequential_statement }

end process | process label | ;

O

{ <contents> } means zero or more repetitions of <contents>
[<contents>] means that <contents> is optional

... means that the category immediately preceding the left brace may be repeated separated by the
specified delimeter

| is used to separate alternatives
all means that the process is sensitive to all of the signals that it reads as inputs

O

o

O

Processes

* A process must be used to create a component with memory
* For example, latches or registers are components with memory

Using attribute chip pin

* Even though my upcoming slides may not use attribute chip_pin to
perform pin assignments, you must use attribute chip_pin in all of
the code that you write

* I’'m not showing the pin assignments to save space in my slides

Process Example (buttontoled.vhd)

* |n,

architecture behav of buttonToLED 1is
begin
buttonToLED behavior: process (pbl, pb2) 1is
begin o
ledl <= pbl;
led?2 <= pb2;
end process buttonToLED behavior;
end architecture behav;

* pbl and pb2 are the sensitivity list

* This code example doesn’t require a process to accomplish the assignments, but,
in this example, both assignments appear to happen at the end of the process

Process Example (reg.vhd)

* |n,

entity reg 1s
port (clk, en: 1in bit;
: 1n bit vector (3 downto 0);
g: out bit vector (3 downto 0));
end entity reg; -

architecture behav of reg 1is

begin
reg behavior: process 1is
begin
walt until clk'event and (not clk) = '1"';
1f (not en) = '1l' then
q <= d;
end if;

end process reg behavior;
end architecture behav;

* The wait statement is used instead of the sensitivity list to determine when the process is active

Use of Array in reg.vhd

* Declaration of d is
*d: 1In bit vector (3 downto 0)

* This declares d to be an input array of four bits numbered from 3 as
the MSB to 0 as the LSB

* The same technique is followed for numbering bits in g

* For all arrays that represent integral numbers, number the elements
(bits) from highest bit number downto lowest bit number

* This maintains our system of numbering bits so that the value of a bit is 2
raised to the bit number (2bit_number)

If Statement

* Our first example of a sequential statement
* Sequential statements are executed in the order they appear in the program
* Sequential statements must appear within a process

[if_label :]
iIf condition then
{ sequential_statement }
{ elsif condition then
{ sequential_statement } }
[else
sequential_statement }]

end if [if_IaﬂeI 1;

o {<contents>} means zero or more repetitions of <contents>
o [<contents>] means that <contents> is optional

* Example of multiplexer implementation

if Sel ='1' then
Q<=A;
else
Q<= B;
end if;

Case Statement

* Case is also a sequential statement
* Sequential statements are executed in the order they appear in the program
* Sequential statements must appear within a process

[case_label ;]
case expression is
when choices => { sequential_statement })

end case [ca;en*_label 1;
choices < (simple_expression | discrete_range | identifier | others) { | ... }

o {<contents>} means zero or more repetitions of <contents>

o [<contents>] means that <contents> is optional

o (<contents>) denotes grouping

° .. means that the category immediately preceding the left brace may be repeated separated by the specified delimeter

* Example of multiplexer implementation

case Sel is
when '1' =>
Q<=A;
when others =>
Q<=B;
end case;

Walit Statement

* Causes suspension of execution

[label :] wait [on signal_name {, ... }]
until condition]
for time_expression] ;

o {<contents>} means zero or more repetitions of <contents>
o [<contents>] means that <contents> is optional

* The on clause causes resumption when any listed signal changes value (a wait on clause at the end of a process is equivalent to
the same signals listed in a process’ sensitivity list)

* The until clause causes resumption when the condition is true

. The)for clause causes resumption after the time interval has elapsed (for example, time_expression could be 1 ms, 10 us, 5 ns,
etc.

e Useful for simulation

* The wait statement cannot be used outside of a process
* More than one wait statement may appear inside a process

* A process may contain either a sensitivity list or one or more wait statements, but not both

Signal Attributes

» <signal>'<attribute>

e Attributes can be

e event True if there is an event of <signal> in the current cycle, false
otherwise

* Example of rising edge triggered (similar to using wait statement above)

if clk'event and clk ='1' then
Q<=D;

Wait Conditions

 The built-in functions
* rising_edge(signal)
* falling_edge(signal)
e are useful in the wait statement

* They are declared in a library that must be referenced before each
entity in which they are referenced

library ieee;
use ieee.std logic_1164.all;
* They can be used only with std_logic or std_ulogic type signals
* We will look at this data type shortly
* We want you to always use std _ulogic rather than bit types

42

Process Example Using rising edge
(regstdulogic.vhd)

* In,

library ieee;
use leee.std logic 1164.all;

entity regStdUlogic 1is
port (clk, en: in std ulogic;
d: in std ulogic vector (3 downto 0);
: out std ulogic vector (3 downto 0));
end entity regStdUlogic;

architecture behav of regStdUlogic 1is

begin
regstd behavior: process 1s
begin —
walt until falling edge(clk);
if (not en) = '1l' Then
q <= d;
end if;

end process regstd behavior;
end architecture behav;

* The wait statement is used instead of the sensitivity list
* Types have been changed from bit and bit_vector to std_ulogic and std_ulogic_vector, respectively

Example of Setting Pin Assignments When

Using a Vector

* As mentioned above, instead of using the Pin Planner in Quartus ll, it is possible to specify pin assignments in
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl

f

our VHDL file (see
le_dir_chip.htm) using the chip_pin synthesis attribute

* The architecture specification should include code similar to the following (see regstdulogic.vhd):

library ieee;
use ieee.std logic 1164.all;

entity regStdUlogic is
port (clk, en: in std ulogic;
d: in std ulogic vector (3 downto 0);
g: out std ulogic wvector (3 downto 0));
end entity regStdUlogic;

architecture behav of regStdUlogic is

attribute chip pin: string;

attribute chip pin of d: signal is "Y23, Y24, AA22, AA23";

attribute chip pin of clk: signal is "R24";

attribute chip pin of en: signal is "N21";

attribute chip pin of g: signal is "H15, Gl6, G115, F15";
begin -

regstd behavior: process is

begin —
wait until falling edge(clk);
if (not en) = '1l' Then
q <= d;
end if;

end process regstd behavior;
end architecture behav;

* This technique can be used to assign pins for only the ports of the top-level entity

* Additionally, this attribute can be used only with single bit or one-dimensional signals

44

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_chip.htm

Logical and Arithmetic

e Assighnment operators act on both logical and arithmetic data types

 We'll cover data types later

Literal Values

Integer
* Binary: 2#10111110#
* QOctal: 8#71#
* Decimal: 0,1, ...
* Hexadecimal: 16#FFFF#

e Character
° IAI
* String
* "name"
e Bit
e '0'and'1’
» std_logic or std_ulogic
° IOI’ lll' |_l
» Vector of bit, std_logic, or std_ulogic

* Binary: "00101"
* Hexadecimal: X"7F"

Attributes of Values in Scalar Types

e <T>'<attribute>
Attributes can be:
* high Maximum value in T
* low Minimum value in T

* Example of the high attribute

signal counter: integer range O to 5_600 000 :=0; -- 200 ms
if counter >= counter'high then
newState := shift;

Attributes of Values in Array Types

e <T>'<attribute>
Attributes can be:

e |eft Leftmost subscript of array T

* right Rightmost subscript of array T

* high Maximum subscript of array T

* low Minimum subscript of array T

* |length Number of elements in array T

e ascending true if subscripts are in ascending order (i.e., defined using to)

* range Range of subscripts of array T

* reverse_range Reversed range of subscripts of array T (i.e., using downto if to was used and vice versa)

* Example of the length attribute

signal data: std_ulogic_vector(15 downto 0);
data <= std_ulogic_vector(to_unsigned(to_integer(unsigned(data))+1, data'length));

Attributes of Types

e <T>'<attribute>
Attributes can be:
* T'base
* T'left
* T'right
* T'high
* T'low
* T'ascending

e <T>'<attribute>(X)
Attributes can be:
* T'image(X)
* T'value(X)
* T'pos(X)
* T'val(X)
* T'succ(X)
* T'pred(X)
* T'leftof(X)
* T'rightof(X)

Base type of type T

Leftmost value of type T

Rightmost value of type T

Maximum value of type T

Minimum value of type T

true if range of type T is defined in ascending order (i.e., defined using to)

String representation of X of type T

Value of type T converted from string X
Integer position of X in type T

Value of type T at Integer position X

Value of type T that is the successor of X
Value of type T that is the predecessor of X
Value of type T that is left of X

Value of type T that is right of X

Example of Using Type Attribute Pos

* To convert from an enumerated type signal to a std_ulogic_vector

* In thri{cf example, StateType is an enumerated type of states in a finite state
machine

type StateType is (state_reset, state_set_address, state_set_addressready,
state_wait_for_mem_dataready_inv, state_read _input_data,
state_clear_addressready, state_w_reset, state_w_set_address,
state_w_set_addressready, state._ w_wait_for_mem_dataready iny,
state_ w_write_data, state_w_clear_addressready);

signal presentState: StateType := state_reset;

signal stateAsArray: std_ulogic_vector(3 downto 0);

stateAsArray <= std_ulogic_vector(to_unsigned(StateType'pos(presentState),
stateAsArray'length));

Example of Using Type Attribute Val

* To convert from a std_ulogic_vector to an enumerated type signal

type ALUFunctType is (funct_add, funct_a, funct_b, funct_not_a, funct_not_b,
funct_a_and_b, funct_a_or b, funct_a xor_b);

signal ALUFunct: ALUFunctType;
signal ALUFunctAsArray: std _ulogic_vector(2 downto 0);

ALUFunct <= StateType'val(to_integer(ALUFunctAsArray));

Instantiation of Components

* A common paradigm in VHDL is creating entities that can be used
throughout a design

* First, the entities are created
* Next, the entities are grouped into a package

* Finally, the package is invoked and the entities are used to create new
entities

Create Components for Instantiation

* For each entity, create a file that contains the entity declaration and the architecture description
* For example, my file xnor02.vhd contains

library ieee;
use ieee.std logic_1164.all;

entity xnor02 is
port (
a, b :in std _ulogic;
: out std_ulogic);
end entity xnor02;

architecture dataflow of xnor02 is
begin

g<='1l"whena=belse'0’;
end architecture dataflow;

Write All Components That Are Part of a
Package

* In my case, in addition to xnor02.vhd, | have also created and04.vhd
and not01.vhd

* Each of these files contains an entity and the corresponding
architecture

File declaring Package

* Create a library package named gates.vhd

* It references the entity files not01.vhd, xnor02.vhd, and and04.vhd through its use of component names

library ieee;
use ieee.std_logic_1164.all;

package gates is

component not01
port (
a:in std_ulogic;
q : out std_ulogic);
end component;

component xnor02
port (
a, b:in std_ulogic;
q :outstd ulogic);
end component;

component and04

port (
a,b,c,d:in std _ulogic;
q : out std_ulogic);

end component;

end gates;

Using Components in Package (1 of 6)

* Note the use of “use work.gates.all” in the beginning of this VHDL file — this allows use of all of the components in that package

library ieee;
use ieee.std_logic_1164.all;

use work.gates.all;
entity comparator4BitStdSeveral is
port (a, b: in std_ulogic_vector(3 downto 0);
equal: out std_ulogic);
end entity comparator4BitStdSeveral;

-- The slide switches assert low in the downé)osition and assert high in the
-~ up position. They are *not* debounced.

-- The individual LEDs are illuminated when driven with a high signal.

-- Assign pins as follows on the DE2-115:
-- Signal Pin Device

- al3 PIN_Y23 SW17 Leftmost slide switch
- al2 PIN_Y24 SW16 slide switch

- all PIN_AA22 SW15 slide switch

- alo PIN_AA23 SW14 slide switch

- b[3 PIN_AA24 SW13 slide switch

- Db[2 PIN_AB23 SW12 slide switch

- b[1 PIN_AB24 SW11 slide switch

- bl0 PIN_AC24 SW10 slide switch

-- equal PIN_H15 LEDR17 leftmost red LED

Using Components in Package (2 of 6)

* The first architecture is a dataflow implementation of the comparator4BitStdSeveral entity

* The second architecture is a dataflow implementation of the same entity using low-level Boolean operators

architecture dataflow of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24",;
attribute chip_pin of equal: signal is "H15";

begin
equal <="'1"when a=belse'0";

end architecture dataflow;

architecture dataflow_boolean of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
batt_ribute chip_pin of equal: signal is "H15";
egin
equal <= not(a(0) xor b(0
and not(a(1) xor b(1
and not(a(2) xor b(2
and not(a(3) xor b(3));
end architecture dataflow_boolean;

Using Components in Package (3 of 6)

* The third architecture is a behavioral implementation of the comparator4BitStdSeveral entity using a
variable and a for loop

architecture behavioral_loop of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23",;
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
batt.ribute chip_pin of equal: signal is "H15";
egin
compare: process(a, b)
variable equalVar : std_logic;

begin
equalvar :="'1";
foriin 3 downto O loop

e%uaIVar := equalVar and (a(i) xnor b(i));

end loop;
egual <= equalVar;

end process compare;

end architecture behavioral_loop;

Using Components in Package (4 of 6)

* The fourth architecture is a behavioral implementation of the comparator4BitStdSeveral entity
using the = operator to perform the comparison

architecture behavioral of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23",;
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
attribute chip_pin of equal: signal is "H15";

begin
comp: process(a, b)
begin

if a =b then
equal <="1";

else
equal <="0"

end if;

end process comp;
end architecture behavioral;

Using Components in Package (5 of 6)

* The fifth architecture is also a behavioral implementation of the comparator4BitStdSeveral entity
using the = operator to perform the comparison, but showing that more than one assignment to
the same signal is allowed inside a process

architecture behavioral _alt of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23",;
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
batt.ribute chip_pin of equal: signal is "H15";
egin
comp: process(a, b)
begin
equal <="'0";
if a =b then
equal <="1"
end if;
end process comp;
end architecture behavioral_alt;

Using Components in Package (6 of 6

* Finally, the sixth architecture is a structural implementation of the comparator4BitStdSeveral entity
* The previously written xnor02 and and04 entities are instantiated and their signals are mapped to our signals

architecture structural of comparator4BitStdSeveral is
attribute chip_pin: string;
attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
attribute chip_pin of equal: signal is "H15";
signal x : std_[ogic_vector(0 to 3);
begin
u0 : xnor02 port map (
a =>a(0),
b => b(0)
q=>x(0)f;
ul : xnor02 port map (
a=>a(l),
b =>b(1)
q=>x(1)f;
u2 : xnor02 port map (
a=>a(2),
b =>b(2)
q=>x(2)f;
u3 : xnor02 port map (
a=>a(3),
b=>b(3
q=>x(3));
u4 : and04 port map (

end architecture structural;

Instantiation of Components

instantiation_label : [component | component name | port map (
([formal_name =>] actual_name) {, ... };

instantiation |abel
 Name of the instantiated component

¢ component_name
* Name of predeclared component

e formal _name
 Names of ports in the component

e actual _name
* Names of signals in the code that instantiates the component

Inclusion of “formal _name =>" in a port map
statement

* Formal parameter names are those signal names used in the entity
that is being port mapped

e Actual parameter names are those signal names used in the entity
that invokes the port map

* We recommend that you always include the “formal_name =>" when

you use a port map
* Including the “formal_name =>" clause emphasizes the association of the
actual parameter with the formal parameter
* Without the “formal _name =>" specified, the actual parameters must appear
in exactly the same order as the formal parameters

Observations about Component Instantiation

 Components cannot be instantiated inside a process

* However, components can be instantiated inside the same entity’s
architecture that contains a process
* That is, after the begin for the architecture and before the process

* More than one port map may appear within a single entity’s
architecture

Vector Data Type

An array of bits is furnished as a built-in type
* bit_vector

Allows the declaration of a vector of signals

For example,
bit_vector(3 downto 0)

is the declaration of a vector of four bits numbered zero-origin from LSB to MSB

And,
bit_vector(1 to 7)

is the declaration of a vector of seven bits numbered one-origin from MSB to LSB
Operators are defined to work on vectors/arrays
Elements can be accessed using parentheses for subscripts

Vector Example
(comparator4bitstdulogic.vhd)

entity comparator4B|tSthIoglc is
port (a, b: in std_ulogic_vector(3 downto 0);
equal out std_ulogic);
end entity comparator4B|tSthIog|c

-- The slide switches assert Iow in the downcJoosmon and assert high in the
-~ up position. They are *not™* debounce

-- The individual LEDs are illuminated when driven with a high signal.

-- A55|gn pins as follows on the DE2-115:

Signal Pin Device
PIN_Y23 SW17 Leftmost slide switch
PIN_Y24 SW16 slide switch
PIN_AA22 SW15 slide switch
PIN_AA23 SW14 slide switch
PIN_AA24 SW13 slide switch
PIN_AB23 SW12 slide switch
PIN_AB24 SW11 slide switch
_ PIN_AC24 SW10 slide switch
-- equal PIN_H15 LEDR17 leftmost red LED

1
1
COOTCOooLWLVOLY L

grchltecture dataflow of comparator4BitStdUlogic is
egin

equal <="'1"when a="belse'0'
en architecture dataflow;

Extended Bit Data Type

std_logic and std_ulogic are extended bit data types

Includes additional states beyond 0 and 1
Z is the high impedance state

—is the don’t care state

U means uninitialized

X means unknown

And, some other values (W, L, and H)

Please do not use any of the additional states for these types —just use 0 and 1

In VHDL, the different states for a std_logic or std_ulogic signal are each discrete
If a VHDL operator or entity hasn’t been designed to know how to deal with one of those states (such as '-'), then it will act on the actual symbol value (such as ‘-")
If you are asserting the value of a signal/port and you don’t care about its value, set it to the “safe” option

* For example, if you're not writing, always set the signal to indicate a read operation

All Boolean operators will operate of signals of type std_logic or std_ulogic

Must use a library to enable access to std_logic and std_ulogic

library ieee;
use ieee.std_logic_1164.all;

We will use std_logic in all cases rather than bit

Actually, as we will see shortly, we will use std_ulogic

67

Declaring New Data Types

* New data types can be created that are based on existing types, but
can be referenced through a simple name

e VHDL code is:

type byte is array (7 downto 0) of bit;
or

type byte is array (7 downto 0) of std_logic;

Data Types

bit

bit_vector

std_logic (multiple outputs of std_logic are allowed to be

std_logic_vector connected together and are resolved; unsigned)

std_ulogic (multiple outputs of std _ulogic are not allowed

std _ulogic_vector to be connected together; unsigned)

integer defaults to 32 bits in width; range can be specified{

natural subtype of integer constrained to be non-negative

_ posciltive subtype of integer constrained to be greater than zero)

signe

unsigned

boolean (values are TRUE and FALSE; TRUE is equivalent to 1

. and FALSE is equivalent to 0)
enumeration tyB_e
constant data object

More Specific Information about std ulogic

 std_logic is a subtype of std_ulogic

* For std_logic, a resolution function allows multiple drivers to a single
signal
* In such a case, the resolution function determines the result

* More specifically, we will use std_ulogic in all cases rather than bit or
std _logic
* By using std_ulogic, Quartus will complain if there are multiple drivers to a
std_ulogic signal

Integer Type

integer range min_value to max_value
integer range max_value downto min_value

Type Abbreviations Used in the Following
Conversion Function Slide

* B means that the argument is of bit type

* BV means that the argument is of bit_vector type

* | means that the argument is of integer type

* S means that the argument is of signed type

* U means that the argument is of unsigned type

* SLV means that the argument is of std_logic_vector type

* SULV means that the argument is of std_ulogic_vector type

Type Casting and Type Conversion Functions

* See the previous slide for argument type « std_ulogic_vector to std_logic_vector:
abbreviations To_StdLogicVector(SULV)
. . e bit vector to std_ulogic vector:
* Type casting functions To StdULogicVector(BV]
* signedto std_logic_vector: std_logic_vector(S) * std_logic_vector to std_ulogic_vector:
« std_logic_vector to signed: signed(SLV) To_StdULogicVector(SLV)
* signed to std_ulogic_vector: std_ulogic_vector(S) ¢ Type conversion functions
* std_ulogic_vector to signed: signed(SULV) « signed to integer: to_integer(S)
* integer to signed: to_signed(l, S'length)
* unsigned to std_logic_vector: std_logic_vector(U) « unsigned to integer: to_integer(U)
» std_logic_vector to unsigned: unsigned(SLV) * integer to unsigned: to_unsigned(l, U'length)
e unsigned to std_ulogic_vector: . .
std_ulogic_vector(U * Must use a library to enable access to numeric
e std_ulogic_vector to unsigned: unsigned(SULV) conversion functions
e libraryieee;
* bit to std_ulogic: To_StdULogic(B) * useieee.numeric_std.all;

* bit_vector to std_logic_vector:
To_StdLogicVector(BV)

Resize Function

e Also in ieee.numeric_std is the “resize” function
e function resize(arg: signed; new_size: natural) return signed;
* function resize(arg: unsigned; new_size: natural) return unsigned;

* The first argument “arg” is resized to occupy “new_size” bits

 |If “arg” is extended, additional more-significant bits are added
* If “arg” is signed, then the sign bit is extended into the more-significant bits
 If “arg” is unsigned, then zero bits are extended into the more-significant bits

* Must use a library to enable access to the “resize” function
* library ieee;
* use ieee.numeric_std.all;

Enumeration Data Type

e User can specify the possible values for a type

type enumeration_type name is (namel {, name2 })

Constant Data Object

* A constant has a fixed value that cannot be changed

* It is not mapped to a wire in a circuit

constant constant_name : type_name := constant_value ;

Sighals

 Signals that are not used in an interface to an entity can be declared at the
beginning of an architecture and then used within that architecture

 Signals can be used inside or outside processes
* Signals are declared in the architecture section before the keyword begin

* An initial value can be given in the declaration for all signals declared in the
declaration

signal identifier {, ... } : subtype_indication
| := expression | ;

o {<contents>} means zero or more repetitions of <contents>
o [<contents>] means that <contents> is optional

° ... means that the category immediately preceding the left brace may be repeated separated by the
speC|f|ed delimeter

Example of Declaring Signals

* An example of declaring a signal (that isn’t a port of an entity) is
shown above in the structural architecture of the
comparatordBitStdUlogicSeveral entity

Variables

Assignment to a variable immediately overwrites the variable with a new value
* In comparison, assignment to a signal takes place immediately in combinational code, but
schedules a new value to be applied to the signal at some later time in sequential code

In general, signals are used to create flip-flops and memory devices; variables are used to
wire together gates in a synthesized circuit

* Use variables to describe connections in a circuit that cannot be described using signals and VHDL
operators

Variables can be used only inside processes
* Variables are declared after the keyword process and before the keyword begin

We will reserve the use of variables to (1) describing how signals are connected together
in for loops and (2) wiring values to be assigned in different FSM cases

An initial value can be given when the variable is declared

Variable Assignment Statement

* Replace the current value of a variable with a new value specified by
an expression

<target> := <expr>;

* Note that variable assignment uses the := operator rather than the <=
operator used for signals

Example of Using Variables with Instantiation

* An example of declaring and using a variable is shown above in the
behavioral_loop architecture of the comparator4BitStdUlogicSeveral
entity

Using VHDL to Implement an FSM (1 of 5)

* We’ll look at an example in debounceSwitch.vhd

 We'll use an FSM to debounce slide switches
* This will be our first use of a clock
* The DE2-70 furnishes a 28.86 MHz clock on pin E16
* The DE2-70 furnishes a 50 MHz clock on pins AD15, D16, R28, and R3
 The DE2-115 furnishes a 50 MHz clock on pins Y2, AG14, and AG15
* This clock will be used to cause our FSM state transitions

 We’ll implement a debounced version of
invertSegmentEdgeNotDebounced.vhd

Using VHDL to Implement an FSM (2 of 5)

* Entity declaration is

library ieee;
use ieee.std logic_1164.all;

entity debounceSwitch is
port (reset, invert: in std_ulogic;
segment: buffer std_ulogic;
clock: in std_ulogic);
end entity debounceSwitch;

Using VHDL to Implement an FSM (3 of 5)

e Architecture declaration is

architecture behavioral of debounceSwitch is
attribute chip_pin: string;
attribute chip_pin of clock: signal is "Y2";
attribute chip_pin of invert: signal is "Y24";
attribute chip_pin of reset: signal is "Y23";
attribute chip_pin of segment: signal is "AD17";
type StateType is (idle, countWhileEngaged, limitWhileEngaged,
countWhileDisengaged);
signal presentState: StateType :=idle;
-- signal counter: integer range 0 to 721 500 :=0; -- 25 ms with 28.86 MHz clock
signal counter: integer range 0 to 1_250 000 :=0; -- 25 ms with 50 MHz clock

Using VHDL to Implement an FSM (4 of 5)

* We use an enumerated type to define the different FSM states

* For example, in debounceSwitch.vhd, we define type StateType as

type StateType is (idle, countWhileEngaged, limitWhileEngaged,
countWhileDisengaged);

* We define a signal for the current state
signal presentState: StateType :=idle;

 And, we initialize it for the start state

Using VHDL to Implement an FSM (5 of 5)

* Use a case statement inside a process for the FSM

e Use a variable to wire together the alternatives for next state

stateMachine: process is
variable newState: StateType;
begin
wait until rising_edge(clock);
case presentState is
when idle =>
counter <= 0;
if reset ='1' then -- slide switch up
segment <="1";
newState :=idle;
else
if invert ='1' then -- slide switch up
segment <= not segment;
newState := countWhileEngaged;

else
newState :=idle;
end if;
end if;
when countWhileEngaged =>
counter <= counter+1;
if counter >= counter'high then
newState := limitWhileEngaged;
else
newState := countWhileEngaged;
end if;
when limitWhileEngaged =>
counter <= 0;
if invert ='0' then -- slide switch down

newState := countWhileDisengaged;
else
newState := limitWhileEngaged,;
end if;
when countWhileDisengaged =>
counter <= counter+1;
if counter >= counter'high then
newState :=idle;
else
newState := countWhileDisengaged;
end if;
end case;
presentState <= newState;
end process stateMachine;

Using Configuration to Select One of Several

Architectures

* By default, the last architecture found that matches the entity
specification will be selected

* To select a different architecture, use the configuration statement as
follows

configuration config_name of x_entity is
for x_arch
end for;

end config_name;

* In general, having multiple architectures for an entity is unnecessary

Using a User-Defined Library

* A sub-directory may be created that contains files, each one of which includes an
entity and an architecture

* Those entities can then be accessed from VHDL files in the main directory by
declaring the library (in this case, the sub-directory is named support) and then
referring to each entity with a qualified name, as follows:

library support;

dig7: support.sevenSegmentDecoder port map (
value => data(15 downto 12),
segments => sevenSegment7);

* Remember to add the VHDL files in the sub-directory to the project using
Quartus’ “Add Files”

	Slide 1: VHDL
	Slide 2: Introduction
	Slide 3: VHDL Mindset
	Slide 4: Entity Declaration
	Slide 5: Entity Buffer Port
	Slide 6: Notes about DE2 LEDs
	Slide 7: Notes about DE2 Pushbuttons
	Slide 8: Architecture Description
	Slide 9: Creating a Complete VHDL Program (buttonfunctions.vhd)
	Slide 10: Using the Altera/Terasic Hardware
	Slide 11: Using Quartus Prime Lite Edition
	Slide 12: Create a New Project (1 of 6)
	Slide 13: Create a New Project (2 of 6)
	Slide 14: Create a New Project (3 of 6)
	Slide 15: Create a New Project (4 of 6)
	Slide 16: Create a New Project (5 of 6)
	Slide 17: Create a New Project (6 of 6)
	Slide 18: Set Project Options
	Slide 19: Build the Project
	Slide 20: Make Pin Assignments
	Slide 21: Program the Hardware with your Design
	Slide 22: Quick DE2 Kit Information
	Slide 23: Alternate Way to Set Pin Assignments
	Slide 24: Operators
	Slide 25: More Specific Information of VHDL
	Slide 26: Simple Signal Assignment Syntax
	Slide 27: Concurrent Assignment Statements
	Slide 28: Selected Signal Assignment
	Slide 29: Conditional Signal Assignment
	Slide 30: Concurrent Assignment Ordering
	Slide 31: Processes
	Slide 32: Process Syntax
	Slide 33: Processes
	Slide 34: Using attribute chip_pin
	Slide 35: Process Example (buttontoled.vhd)
	Slide 36: Process Example (reg.vhd)
	Slide 37: Use of Array in reg.vhd
	Slide 38: If Statement
	Slide 39: Case Statement
	Slide 40: Wait Statement
	Slide 41: Signal Attributes
	Slide 42: Wait Conditions
	Slide 43: Process Example Using rising_edge (regstdulogic.vhd)
	Slide 44: Example of Setting Pin Assignments When Using a Vector
	Slide 45: Logical and Arithmetic
	Slide 46: Literal Values
	Slide 47: Attributes of Values in Scalar Types
	Slide 48: Attributes of Values in Array Types
	Slide 49: Attributes of Types
	Slide 50: Example of Using Type Attribute Pos
	Slide 51: Example of Using Type Attribute Val
	Slide 52: Instantiation of Components
	Slide 53: Create Components for Instantiation
	Slide 54: Write All Components That Are Part of a Package
	Slide 55: File declaring Package
	Slide 56: Using Components in Package (1 of 6)
	Slide 57: Using Components in Package (2 of 6)
	Slide 58: Using Components in Package (3 of 6)
	Slide 59: Using Components in Package (4 of 6)
	Slide 60: Using Components in Package (5 of 6)
	Slide 61: Using Components in Package (6 of 6)
	Slide 62: Instantiation of Components
	Slide 63: Inclusion of “formal_name =>” in a port map statement
	Slide 64: Observations about Component Instantiation
	Slide 65: Vector Data Type
	Slide 66: Vector Example (comparator4bitstdulogic.vhd)
	Slide 67: Extended Bit Data Type
	Slide 68: Declaring New Data Types
	Slide 69: Data Types
	Slide 70: More Specific Information about std_ulogic
	Slide 71: Integer Type
	Slide 72: Type Abbreviations Used in the Following Conversion Function Slide
	Slide 73: Type Casting and Type Conversion Functions
	Slide 74: Resize Function
	Slide 75: Enumeration Data Type
	Slide 76: Constant Data Object
	Slide 77: Signals
	Slide 78: Example of Declaring Signals
	Slide 79: Variables
	Slide 80: Variable Assignment Statement
	Slide 81: Example of Using Variables with Instantiation
	Slide 82: Using VHDL to Implement an FSM (1 of 5)
	Slide 83: Using VHDL to Implement an FSM (2 of 5)
	Slide 84: Using VHDL to Implement an FSM (3 of 5)
	Slide 85: Using VHDL to Implement an FSM (4 of 5)
	Slide 86: Using VHDL to Implement an FSM (5 of 5)
	Slide 87: Using Configuration to Select One of Several Architectures
	Slide 88: Using a User-Defined Library

