
VHDL
Prof. James L. Frankel

Harvard University

Version of 2:46 PM 10-Dec-2024
Copyright © 2024, 2023, 2021, 2020, 2019, 2017, 2016 James L. Frankel. All rights reserved.

Introduction

• VHDL is a Hardware Description Language
• VHSIC HDL: Very High Speed Integrated Circuit Hardware Description Language
• Used both for synthesis and simulation

• Synthesis is using the VHDL program to create a device such as the
programming for an FPGA

• Simulation is using the VHDL program to run a model of how that program
behaves – this can include timing simulation

• We will be using VHDL primarily for synthesis

• Not all VHDL language features are appropriate for both synthesis and
simulation

2

VHDL Mindset

• When writing code in VHDL, do not think of the code as a traditional
program that runs sequentially

• Think of the VHDL code as being a description of a circuit composed of
Boolean gates

• The consequences of this mindset is that all circuits (i.e., all code) are
active (or, if you prefer, running) in parallel

3

Entity Declaration

• Declares the interface to an entity
• Only inputs and output to an entity should appear in the entity declaration
• The entity declaration is somewhat similar to the parameters to and return value from a function/procedure

• Example:

entity buttonFunctions is
 port (pb1, pb2: in bit;
 led1, led2: out bit);
end entity buttonFunctions;

• Details
• buttonFunctions is the entity’s name
• pb1 and pb2 and inputs to the entity – specified by the keyword in
• led1 and led2 are outputs from the entity – specified by the keyword out
• bit is a built-in data type that can have values '0' and '1'

4

Entity Buffer Port

• In addition to in and out, buffer can be specified

• A buffer is an output that can also be read in your code

5

Notes about DE2 LEDs

• Individual LEDs are illuminated when driven with a high signal

• Look in the DE2-70 or DE2-115 User Manual for pin assignments

• For example, the leftmost red LED is LEDR17…
• In the DE2-70, it is FPGA pin number PIN_AJ7 (see page 35)

• In the DE2-115, it is FPGA pin number PIN_H15 (see pages 34-36, PDF pages
35-37)

6

Notes about DE2 Pushbuttons

• The pushbuttons (KEY3 through KEY0) normally output a high signal when not
pressed

• When pressed, the pushbuttons output a low signal

• This is referred to active low

• The pushbuttons are debounced
• But, we have found that the pushbuttons are not completely debounced

• Look in the DE2-70 or DE2-115 User Manual for pin assignments

• For example, the leftmost pushbutton is KEY3…
• In the DE2-70, it is FPGA pin number PIN_U29 (see page 35)
• In the DE2-115, it is FPGA pin number PIN_R24 (see page 35, PDF page 36)

7

Architecture Description

• Describes the implementation of an entity

• Example:

architecture dataflow of buttonFunctions is
begin
 led1 <= (not pb1) and (not pb2);
 led2 <= (not pb1) or (not pb2);
end architecture dataflow;

• Details
• dataflow is the architecture’s name

• It is bound to the entity name – therefore, it can be used for each architecture for different entities
• More than one architecture may be given for one entity
• The architecture name is intended to indicate the approach taken in that implementation of the entity

• <= is the symbol used in a simple assignment statement
• and, or, and not are logical operators

8

Creating a Complete VHDL Program
(buttonfunctions.vhd)
• Combine the entity declaration with the architecture description

entity buttonFunctions is
 port (pb1, pb2: in bit;
 led1, led2: out bit);
end entity buttonFunctions;

-- The pushbuttons are active-low (i.e., the signals are normally high and
-- become low when the pushbuttons are pressed). They *are* debounced.

-- The individual LEDs are illuminated when driven with a high signal.

-- Assign pins as follows on the DE2-70:
-- Signal Pin Device
-- led1 PIN_AJ7 LEDR17 leftmost red LED
-- led2 PIN_AD8 LEDR16 second to leftmost red LED
-- pb1 PIN_U29 KEY3 leftmost pushbutton
-- pb2 PIN_U30 KEY2 second to leftmost pushbutton

-- Assign pins as follows on the DE2-115:
-- Signal Pin Device
-- led1 PIN_H15 LEDR17 leftmost red LED
-- led2 PIN_G16 LEDR16 second to leftmost red LED
-- pb1 PIN_R24 KEY3 leftmost pushbutton
-- pb2 PIN_N21 KEY2 second to leftmost pushbutton

architecture dataflow of buttonFunctions is
begin
 led1 <= (not pb1) and (not pb2);
 led2 <= (not pb1) or (not pb2);
end architecture dataflow;

• Details
• The double hyphen denotes a comment

9

Using the Altera/Terasic Hardware

• Attach AC power cable to power supply
• Attach power supply to the Altera DE2 board at the DC 12V connector
• Attach USB cable from the Altera DE2 board BLASTER jack to your

computer
• Power on the Altera DE2 board by pushing the red button labelled POWER

or POWER/SW
• The Altera DE2 should start counting on all the seven-segment displays,

flashing the red and green individual LEDs, and displaying a welcome
message on the LCD display

• Pressing the rightmost pushbutton labelled KEY0 should display either all
0s with or without decimal points on the DE2-70 or all 8s without decimal
points on the DE2-115 on the seven-segment displays

10

Using Quartus Prime Lite Edition

• Ensure that you are using Quartus Prime Lite Edition, Release 20.1.1

• Create a new directory for each project
• Name the directory with the same as the project name

• This will segregate all files being used for this project

• If you have already created a source VHDL file (with extension .vhd),
copy it into the new directory
• Name the VHDL source file with the same name as the project

• Launch Quartus Prime Lite Edition

11

Create a New Project (1 of 6)

• Select File → New Project Wizard...

• In the pop-up Introduction window, select Next

• In the New Project Wizard window, click on Next

• In the Directory, Name, Top-Level Entity window…
• Navigate to the working directory that you just created for this project and select it
• Enter the name of the project
• The top-level entity name by default will be the same as the project name
• Click on Next
• Or, if you have already created an existing project with the same settings, click on

Use Existing Project Settings…
• Optionally select Copy settings from specified project as default settings
• Navigate to the specified or last opened project’s .qpf (project) file

12

Create a New Project (2 of 6)

• In the Project Type window…
• Ensure that Empty project is selected

• Click on Next

13

Create a New Project (3 of 6)

• In the Add Files window…
• If you have already added VHDL source files into this directory, click on Add

All
• Your VHDL files should now appear in the list

• Click on Next

14

Create a New Project (4 of 6)

• In the Family, Device & Board Settings window…
• For the DE2-115…

• Under Device family, select Cyclone IV E

• In the Available Devices list, select EP4CE115F29C7
• Verify that this is the FPGA part number installed in your DE2 board

• EP4CE115F29C7N should be entered as EP4CE115F29C7

• The appropriate device should be highlighted

• Click on Next

15

Create a New Project (5 of 6)

• In the EDA Tool Settings window…
• Under Design Entry/Synthesis, enter Tool Name: Custom, Format(s): VHDL

• Under Simulation, enter Tool Name: ModelSim-Altera, Format(s): VHDL

• Under Board-Level, Tool Name: Timing, enter STAMP

• Under Board-Level, Tool Name: Symbol, enter FPGA Xchange

• Under Board-Level, Tool Name: Signal Integrity,
• Enter IBIS for the DE2-70

• Enter HSPICE for the DE2-115

• Under Board-Level, Tool Name: Boundary Scan, enter BSDL

• Click on Next

16

Create a New Project (6 of 6)

• In the Summary window…
• Verify that everything was correctly entered

• Once all choices are correct, click on Finish

17

Set Project Options

• Under Assignments → Settings... →
(in the upper right) Device/Board… → Device and Pin Options... →
Unused Pins, under Reserve all unused pins:, select As input tri-
stated

• Click on OK in the Device and Pin Options window

• Click on OK in the Device window

• Click on OK in the Settings window

18

Build the Project

• Under Processing, select Start Compilation

• Wait until the entire compilation is complete
• In the lowest Processing pane, a line will appear with the text

Quartus Prime Full Compilation was successful. 0 errors, n warnings

• Before attempting to use the compiled project, pin assignments need
to be made

19

Make Pin Assignments

• Under Assignments → Pin Planner, you should see all node names that are
listing in your entity interface

• On the lower half of that panel, in the Location column, change the
assignments to the correct pins that you require by using the drop-down
list
• Close the Pin Planner windows by clicking on X in the upper right corner

• Recompile your project by clicking on Processing → Start Compilation

• If you now look at the pin assignments made by the Fitter, they should be
the same as those that you entered

20

Program the Hardware with your Design

• Ensure that the slide switch on the left side of the DE2 is in the RUN position (not in the PROG
position)

• Select Tools → Programmer, to program the hardware

• In the Programmer window that opens, the Hardware Setup… should show USB-Blaster selected
and the Mode should be JTAG

• The appropriate .sof file should already be shown under File
• If the appropriate .sof file is not already shown under File, click on Add File… and in the Select Programming

File, click on the output_files subdirectory and select the appropriate .sof file and click on Open

• Back in the Programmer window, ensure that Program/Configure check box is checked

• Click on Start
• The Progress bar should show the programming progress
• Finally, the Progress bar should show 100% (Successful) in green

• Your design should be loaded into the FPGA and is currently active

• If you see unassigned LEDs partially illuminated, you probably forgot to Reserve all unused pins:
As input tri-stated

21

Quick DE2 Kit Information

• Review: Individual LEDs are illuminated when driven by a high signal

• Segments of the seven-segment LEDs are illuminated when driven by
a low signal

• Review: The four pushbutton switches are debounced and are active
low (they output a low signal when depressed)

• The slide switches are not debounced

22

Alternate Way to Set Pin Assignments

• Instead of using the Pin Planner in Quartus Prime, it is possible to specify pin assignments in your VHDL file (see
https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_chip.htm) using the chip_pin synthesis attribute

• The architecture specification should include code similar to the following (see buttonfunctionspinassign.vhd):

entity buttonFunctionsPinAssign is
 port (pb1, pb2: in bit;
 led1, led2: out bit);
end entity buttonFunctionsPinAssign;

-- Assign pins as follows on the DE2-115:
-- Signal Pin Device
-- led1 PIN_H15 LEDR17 leftmost red LED
-- led2 PIN_G16 LEDR16 second to leftmost red LED
-- pb1 PIN_R24 KEY3 leftmost pushbutton
-- pb2 PIN_N21 KEY2 second to leftmost pushbutton

architecture dataflow of buttonFunctionsPinAssign is
 attribute chip_pin: string;
 attribute chip_pin of led1: signal is "H15";
 attribute chip_pin of led2: signal is "G16";
 attribute chip_pin of pb1: signal is "R24";
 attribute chip_pin of pb2: signal is "N21";
begin
 led1 <= (not pb1) and (not pb2);
 led2 <= (not pb1) or (not pb2);
end architecture dataflow;

• This technique can be used to assign pins for only the ports of the top-level entity
• Of course, a signal can be assigned and thereby used by (“passed to”) a lower-level entity

• All signals that are connected outside the FPGA (i.e., to LEDs, 7-segment displays, pushbuttons, slide switches, etc.) should appear as ports of the top-level entity

• Additionally, this attribute can be used only with single bit or one-dimensional signals

23

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_chip.htm

• Within any one precedence level, operators are evaluated from left to right

• Of course, parentheses may be used to change order of evaluation

Operators

Precedence Operator Class Operators

Highest Miscellaneous ** (exponentiation), abs, not

Multiplying *, /, mod, rem

Sign (Unary Numeric) +, –

Adding +, –, & (concatenation)

Shift sll, srl, sla, sra, rol, ror

Relational =, /=, <, <=, >, >=

Lowest Logical and, or, nand, nor, xor, xnor

24

More Specific Information of VHDL

• The IEEE Standard VHDL Language Reference Manual is IEEE Std 1076-
2008, but is quite expensive

• Our textbook, The Designer’s Guide to VHDL, Third Edition by Peter J.
Ashenden contains the same information in a more accessible form

• Refer to these documents for more specific information on VHDL

25

Simple Signal Assignment Syntax

• Types of target and waveform must be the same

• Sets a signal to a value

• That assignment happens always

 target <= waveform ;

• Example above is

 led1 <= (not pb1) and (not pb2);
 led2 <= (not pb1) or (not pb2);

26

Concurrent Assignment Statements

• Simple assignment
• We’ve already seen this

• Selected signal assignment

• Conditional signal assignment

27

Selected Signal Assignment

• Set a signal to one of several alternatives

• The when clauses must cover all possibilities
• The keyword others may be used for this purpose

 with expression select
 target <= { waveform when choices , }
 waveform when choices ;

{ <contents> } means zero or more repetitions of <contents>

• Example of multiplexer implementation

 with Sel select
 Q <= A when '1',
 B when others;

28

Conditional Signal Assignment

• Set a signal to one of several alternatives

• Conditions need not be mutually exclusive
• The earlier clauses have higher priority

 target <= waveform when condition
 { else waveform when condition }
 [else waveform] ;

{ <contents> } means zero or more repetitions of <contents>
[<contents>] means that <contents> is optional

• Example of multiplexer implementation

 Q <= A when Sel = '1‘ else
 B;

29

Concurrent Assignment Ordering

• Ordering of concurrent assignment statements does not matter
• Their operations are always taking place

30

Processes

• The process statement is used to delimit a process
• Description

• Within a process there may be more than one statement
• The process becomes active when there is a change to one or more of the signals

listed in the process’ sensitivity list
• Once active, the statements within the process appear to be evaluated in sequential

order
• Assignments to signals within the process are not visible outside the process until all

of the statements in the process have been evaluated
• If there is more than one assignment to the same signal, only the last assignment is

externally visible

• Certain statements may appear only within a process
• Processes may not be nested

31

Process Syntax

• Use a process to introduce a block of sequential statements
• Sequential statements are executed in the order they appear in the program
• Sequential statements must appear within a process

 [process_label :]
 process [(signal_name { , … }) | (all)] [is]
 { process_declarative_item }
 begin
 { sequential_statement }
 end process [process_label] ;

{ <contents> } means zero or more repetitions of <contents>
[<contents>] means that <contents> is optional
… means that the category immediately preceding the left brace may be repeated separated by the
specified delimeter
| is used to separate alternatives

• all means that the process is sensitive to all of the signals that it reads as inputs

32

Processes

• A process must be used to create a component with memory
• For example, latches or registers are components with memory

33

Using attribute chip_pin

• Even though my upcoming slides may not use attribute chip_pin to
perform pin assignments, you must use attribute chip_pin in all of
the code that you write
• I’m not showing the pin assignments to save space in my slides

34

Process Example (buttontoled.vhd)

• In,

architecture behav of buttonToLED is
begin
 buttonToLED_behavior: process(pb1, pb2) is
 begin
 led1 <= pb1;
 led2 <= pb2;
 end process buttonToLED_behavior;
end architecture behav;

• pb1 and pb2 are the sensitivity list

• This code example doesn’t require a process to accomplish the assignments, but,
in this example, both assignments appear to happen at the end of the process

35

Process Example (reg.vhd)

• In,

entity reg is
 port (clk, en: in bit;
 d: in bit_vector(3 downto 0);
 q: out bit_vector(3 downto 0));
end entity reg;

architecture behav of reg is
begin
 reg_behavior: process is
 begin
 wait until clk'event and (not clk) = '1';
 if (not en) = '1' then
 q <= d;
 end if;
 end process reg_behavior;
end architecture behav;

• The wait statement is used instead of the sensitivity list to determine when the process is active

36

Use of Array in reg.vhd

• Declaration of d is
• d: in bit_vector(3 downto 0)

• This declares d to be an input array of four bits numbered from 3 as
the MSB to 0 as the LSB
• The same technique is followed for numbering bits in q

• For all arrays that represent integral numbers, number the elements
(bits) from highest bit number downto lowest bit number
• This maintains our system of numbering bits so that the value of a bit is 2

raised to the bit number (2bit_number)

37

If Statement

• Our first example of a sequential statement
• Sequential statements are executed in the order they appear in the program
• Sequential statements must appear within a process

 [if_label :]
 if condition then
 { sequential_statement }
 { elsif condition then
 { sequential_statement } }
 [else
 { sequential_statement }]
 end if [if_label] ;

{ <contents> } means zero or more repetitions of <contents>

[<contents>] means that <contents> is optional

• Example of multiplexer implementation

 if Sel = '1' then
 Q <= A;
 else
 Q <= B;
 end if;

38

Case Statement

• Case is also a sequential statement
• Sequential statements are executed in the order they appear in the program
• Sequential statements must appear within a process

 [case_label :]
 case expression is
 (when choices => { sequential_statement })
 { … }
 end case [case_label] ;

 choices ⇐ (simple_expression | discrete_range | identifier | others) { | … }

{ <contents> } means zero or more repetitions of <contents>

[<contents>] means that <contents> is optional

(<contents>) denotes grouping

… means that the category immediately preceding the left brace may be repeated separated by the specified delimeter

• Example of multiplexer implementation

 case Sel is
 when '1' =>
 Q <= A;
 when others =>
 Q <= B;
 end case;

39

Wait Statement

• Causes suspension of execution

[label :] wait [on signal_name { , … }]
 [until condition]
 [for time_expression] ;

{ <contents> } means zero or more repetitions of <contents>

[<contents>] means that <contents> is optional

• The on clause causes resumption when any listed signal changes value (a wait on clause at the end of a process is equivalent to
the same signals listed in a process’ sensitivity list)

• The until clause causes resumption when the condition is true

• The for clause causes resumption after the time interval has elapsed (for example, time_expression could be 1 ms, 10 us, 5 ns,
etc.)

• Useful for simulation

• The wait statement cannot be used outside of a process
• More than one wait statement may appear inside a process

• A process may contain either a sensitivity list or one or more wait statements, but not both

40

Signal Attributes

• <signal>'<attribute>

• Attributes can be
• event True if there is an event of <signal> in the current cycle, false

 otherwise
• …

• Example of rising edge triggered (similar to using wait statement above)

 if clk'event and clk = '1' then
 Q <= D ;

41

Wait Conditions

• The built-in functions
• rising_edge(signal)
• falling_edge(signal)

• are useful in the wait statement

• They are declared in a library that must be referenced before each
entity in which they are referenced

library ieee;
use ieee.std_logic_1164.all;

• They can be used only with std_logic or std_ulogic type signals
• We will look at this data type shortly
• We want you to always use std_ulogic rather than bit types

42

Process Example Using rising_edge
(regstdulogic.vhd)
• In,

library ieee;
use ieee.std_logic_1164.all;

entity regStdUlogic is
 port (clk, en: in std_ulogic;
 d: in std_ulogic_vector(3 downto 0);
 q: out std_ulogic_vector(3 downto 0));
end entity regStdUlogic;

architecture behav of regStdUlogic is
begin
 regstd_behavior: process is
 begin
 wait until falling_edge(clk);
 if (not en) = '1' then
 q <= d;
 end if;
 end process regstd_behavior;
end architecture behav;

• The wait statement is used instead of the sensitivity list

• Types have been changed from bit and bit_vector to std_ulogic and std_ulogic_vector, respectively

43

Example of Setting Pin Assignments When
Using a Vector
• As mentioned above, instead of using the Pin Planner in Quartus II, it is possible to specify pin assignments in your VHDL file (see

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_chip.htm) using the chip_pin synthesis attribute

• The architecture specification should include code similar to the following (see regstdulogic.vhd):

library ieee;
use ieee.std_logic_1164.all;

entity regStdUlogic is
 port (clk, en: in std_ulogic;
 d: in std_ulogic_vector(3 downto 0);
 q: out std_ulogic_vector(3 downto 0));
end entity regStdUlogic;

architecture behav of regStdUlogic is
 attribute chip_pin: string;
 attribute chip_pin of d: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of clk: signal is "R24";
 attribute chip_pin of en: signal is "N21";
 attribute chip_pin of q: signal is "H15, G16, G15, F15";
begin
 regstd_behavior: process is
 begin
 wait until falling_edge(clk);
 if (not en) = '1' then
 q <= d;
 end if;
 end process regstd_behavior;
end architecture behav;

• This technique can be used to assign pins for only the ports of the top-level entity

• Additionally, this attribute can be used only with single bit or one-dimensional signals

44

https://www.intel.com/content/www/us/en/programmable/quartushelp/current/index.htm#hdl/vhdl/vhdl_file_dir_chip.htm

Logical and Arithmetic

• Assignment operators act on both logical and arithmetic data types

• We’ll cover data types later

45

Literal Values

• Integer
• Binary: 2#10111110#
• Octal: 8#71#
• Decimal: 0, 1, …
• Hexadecimal: 16#FFFF#

• Character
• 'A'

• String
• "name"

• Bit
• '0' and '1'

• std_logic or std_ulogic
• '0', '1', '-'

• Vector of bit, std_logic, or std_ulogic
• Binary: "00101"
• Hexadecimal: X"7F"

46

Attributes of Values in Scalar Types

• <T>'<attribute>
Attributes can be:

• high Maximum value in T

• low Minimum value in T

• …

• Example of the high attribute

 signal counter: integer range 0 to 5_600_000 := 0; -- 200 ms
 if counter >= counter'high then
 newState := shift;

47

Attributes of Values in Array Types

• <T>'<attribute>
Attributes can be:
• left Leftmost subscript of array T
• right Rightmost subscript of array T
• high Maximum subscript of array T
• low Minimum subscript of array T
• length Number of elements in array T
• ascending true if subscripts are in ascending order (i.e., defined using to)
• range Range of subscripts of array T
• reverse_range Reversed range of subscripts of array T (i.e., using downto if to was used and vice versa)

• Example of the length attribute

 signal data: std_ulogic_vector(15 downto 0);
 data <= std_ulogic_vector(to_unsigned(to_integer(unsigned(data))+1, data'length));

48

Attributes of Types

• <T>'<attribute>
Attributes can be:
• T'base Base type of type T
• T'left Leftmost value of type T
• T'right Rightmost value of type T
• T'high Maximum value of type T
• T'low Minimum value of type T
• T'ascending true if range of type T is defined in ascending order (i.e., defined using to)

• <T>'<attribute>(X)
Attributes can be:
• T'image(X) String representation of X of type T
• T'value(X) Value of type T converted from string X
• T'pos(X) Integer position of X in type T
• T'val(X) Value of type T at Integer position X
• T'succ(X) Value of type T that is the successor of X
• T'pred(X) Value of type T that is the predecessor of X
• T'leftof(X) Value of type T that is left of X
• T'rightof(X) Value of type T that is right of X

49

Example of Using Type Attribute Pos

• To convert from an enumerated type signal to a std_ulogic_vector

• In this example, StateType is an enumerated type of states in a finite state
machine

type StateType is (state_reset, state_set_address, state_set_addressready,
 state_wait_for_mem_dataready_inv, state_read_input_data,
 state_clear_addressready, state_w_reset, state_w_set_address,
 state_w_set_addressready, state_w_wait_for_mem_dataready_inv,
 state_w_write_data, state_w_clear_addressready);
signal presentState: StateType := state_reset;
signal stateAsArray: std_ulogic_vector(3 downto 0);

stateAsArray <= std_ulogic_vector(to_unsigned(StateType'pos(presentState),
 stateAsArray'length));

50

Example of Using Type Attribute Val

• To convert from a std_ulogic_vector to an enumerated type signal
type ALUFunctType is (funct_add, funct_a, funct_b, funct_not_a, funct_not_b,
 funct_a_and_b, funct_a_or_b, funct_a_xor_b);

signal ALUFunct: ALUFunctType;

signal ALUFunctAsArray: std_ulogic_vector(2 downto 0);

ALUFunct <= StateType'val(to_integer(ALUFunctAsArray));

51

Instantiation of Components

• A common paradigm in VHDL is creating entities that can be used
throughout a design

• First, the entities are created

• Next, the entities are grouped into a package

• Finally, the package is invoked and the entities are used to create new
entities

52

Create Components for Instantiation

• For each entity, create a file that contains the entity declaration and the architecture description

• For example, my file xnor02.vhd contains

library ieee;
use ieee.std_logic_1164.all;

entity xnor02 is
 port (
 a, b : in std_ulogic;
 q : out std_ulogic);
end entity xnor02;

architecture dataflow of xnor02 is
begin
 q <= '1' when a = b else '0';
end architecture dataflow;

53

Write All Components That Are Part of a
Package
• In my case, in addition to xnor02.vhd, I have also created and04.vhd

and not01.vhd

• Each of these files contains an entity and the corresponding
architecture

54

File declaring Package

• Create a library package named gates.vhd

• It references the entity files not01.vhd, xnor02.vhd, and and04.vhd through its use of component names

library ieee;
use ieee.std_logic_1164.all;

package gates is

 component not01
 port (
 a : in std_ulogic;
 q : out std_ulogic);
 end component;

 component xnor02
 port (
 a, b : in std_ulogic;
 q : out std_ulogic);
 end component;

 component and04
 port (
 a, b, c, d : in std_ulogic;
 q : out std_ulogic);
 end component;

end gates;

55

Using Components in Package (1 of 6)

• Note the use of “use work.gates.all” in the beginning of this VHDL file – this allows use of all of the components in that package

library ieee;
use ieee.std_logic_1164.all;

use work.gates.all;

entity comparator4BitStdSeveral is
 port (a, b: in std_ulogic_vector(3 downto 0);
 equal: out std_ulogic);
end entity comparator4BitStdSeveral;

-- The slide switches assert low in the down position and assert high in the
-- up position. They are *not* debounced.

-- The individual LEDs are illuminated when driven with a high signal.

-- Assign pins as follows on the DE2-115:
-- Signal Pin Device
-- a[3] PIN_Y23 SW17 Leftmost slide switch
-- a[2] PIN_Y24 SW16 slide switch
-- a[1] PIN_AA22 SW15 slide switch
-- a[0] PIN_AA23 SW14 slide switch
-- b[3] PIN_AA24 SW13 slide switch
-- b[2] PIN_AB23 SW12 slide switch
-- b[1] PIN_AB24 SW11 slide switch
-- b[0] PIN_AC24 SW10 slide switch
-- equal PIN_H15 LEDR17 leftmost red LED

56

Using Components in Package (2 of 6)

• The first architecture is a dataflow implementation of the comparator4BitStdSeveral entity

• The second architecture is a dataflow implementation of the same entity using low-level Boolean operators

architecture dataflow of comparator4BitStdSeveral is
 attribute chip_pin: string;
 attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
 attribute chip_pin of equal: signal is "H15";
begin
 equal <= '1' when a = b else '0';
end architecture dataflow;

architecture dataflow_boolean of comparator4BitStdSeveral is
 attribute chip_pin: string;
 attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
 attribute chip_pin of equal: signal is "H15";
begin
 equal <= not(a(0) xor b(0))
 and not(a(1) xor b(1))
 and not(a(2) xor b(2))
 and not(a(3) xor b(3));
end architecture dataflow_boolean;

57

Using Components in Package (3 of 6)

• The third architecture is a behavioral implementation of the comparator4BitStdSeveral entity using a
variable and a for loop

architecture behavioral_loop of comparator4BitStdSeveral is
 attribute chip_pin: string;
 attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
 attribute chip_pin of equal: signal is "H15";
begin
 compare: process(a, b)
 variable equalVar : std_logic;

 begin
 equalVar := '1';
 for i in 3 downto 0 loop
 equalVar := equalVar and (a(i) xnor b(i));
 end loop;
 equal <= equalVar;
 end process compare;
end architecture behavioral_loop;

58

Using Components in Package (4 of 6)

• The fourth architecture is a behavioral implementation of the comparator4BitStdSeveral entity
using the = operator to perform the comparison

architecture behavioral of comparator4BitStdSeveral is
 attribute chip_pin: string;
 attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
 attribute chip_pin of equal: signal is "H15";
begin
 comp: process(a, b)
 begin
 if a = b then
 equal <= '1';
 else
 equal <= '0';
 end if;
 end process comp;
end architecture behavioral;

59

Using Components in Package (5 of 6)

• The fifth architecture is also a behavioral implementation of the comparator4BitStdSeveral entity
using the = operator to perform the comparison, but showing that more than one assignment to
the same signal is allowed inside a process

architecture behavioral_alt of comparator4BitStdSeveral is
 attribute chip_pin: string;
 attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
 attribute chip_pin of equal: signal is "H15";
begin
 comp: process(a, b)
 begin
 equal <= '0';
 if a = b then
 equal <= '1';
 end if;
 end process comp;
end architecture behavioral_alt;

60

Using Components in Package (6 of 6)

• Finally, the sixth architecture is a structural implementation of the comparator4BitStdSeveral entity

• The previously written xnor02 and and04 entities are instantiated and their signals are mapped to our signals

architecture structural of comparator4BitStdSeveral is
 attribute chip_pin: string;
 attribute chip_pin of a: signal is "Y23, Y24, AA22, AA23";
 attribute chip_pin of b: signal is "AA24, AB23, AB24, AC24";
 attribute chip_pin of equal: signal is "H15";
 signal x : std_logic_vector(0 to 3);
begin
 u0 : xnor02 port map (
 a => a(0),
 b => b(0),
 q => x(0));
 u1 : xnor02 port map (
 a => a(1),
 b => b(1),
 q => x(1));
 u2 : xnor02 port map (
 a => a(2),
 b => b(2),
 q => x(2));
 u3 : xnor02 port map (
 a => a(3),
 b => b(3),
 q => x(3));
 u4 : and04 port map (
 a => x(0),
 b => x(1),
 c => x(2),
 d => x(3),
 q => equal);
end architecture structural;

61

Instantiation of Components

• instantiation_label : [component] component_name [port map (
 ([formal_name =>] actual_name) { , … } ;

• instantiation_label
• Name of the instantiated component

• component_name
• Name of predeclared component

• formal_name
• Names of ports in the component

• actual_name
• Names of signals in the code that instantiates the component

62

Inclusion of “formal_name =>” in a port map
statement
• Formal parameter names are those signal names used in the entity

that is being port mapped

• Actual parameter names are those signal names used in the entity
that invokes the port map

• We recommend that you always include the “formal_name =>” when
you use a port map
• Including the “formal_name =>” clause emphasizes the association of the

actual parameter with the formal parameter

• Without the “formal_name =>” specified, the actual parameters must appear
in exactly the same order as the formal parameters

63

Observations about Component Instantiation

• Components cannot be instantiated inside a process

• However, components can be instantiated inside the same entity’s
architecture that contains a process
• That is, after the begin for the architecture and before the process

• More than one port map may appear within a single entity’s
architecture

64

Vector Data Type

• An array of bits is furnished as a built-in type
• bit_vector

• Allows the declaration of a vector of signals

• For example,
bit_vector(3 downto 0)

 is the declaration of a vector of four bits numbered zero-origin from LSB to MSB

• And,
bit_vector(1 to 7)

 is the declaration of a vector of seven bits numbered one-origin from MSB to LSB

• Operators are defined to work on vectors/arrays

• Elements can be accessed using parentheses for subscripts

65

Vector Example
(comparator4bitstdulogic.vhd)
entity comparator4BitStdUlogic is
 port (a, b: in std_ulogic_vector(3 downto 0);
 equal: out std_ulogic);
end entity comparator4BitStdUlogic;

-- The slide switches assert low in the down position and assert high in the
-- up position. They are *not* debounced.

-- The individual LEDs are illuminated when driven with a high signal.

-- Assign pins as follows on the DE2-115:
-- Signal Pin Device
-- a[3] PIN_Y23 SW17 Leftmost slide switch
-- a[2] PIN_Y24 SW16 slide switch
-- a[1] PIN_AA22 SW15 slide switch
-- a[0] PIN_AA23 SW14 slide switch
-- b[3] PIN_AA24 SW13 slide switch
-- b[2] PIN_AB23 SW12 slide switch
-- b[1] PIN_AB24 SW11 slide switch
-- b[0] PIN_AC24 SW10 slide switch
-- equal PIN_H15 LEDR17 leftmost red LED

architecture dataflow of comparator4BitStdUlogic is
begin
 equal <= '1' when a = b else '0';
end architecture dataflow;

66

Extended Bit Data Type

• std_logic and std_ulogic are extended bit data types
• Includes additional states beyond 0 and 1

• Z is the high impedance state

• – is the don’t care state

• U means uninitialized

• X means unknown

• And, some other values (W, L, and H)

• Please do not use any of the additional states for these types – just use 0 and 1
• In VHDL, the different states for a std_logic or std_ulogic signal are each discrete

• If a VHDL operator or entity hasn’t been designed to know how to deal with one of those states (such as '-'), then it will act on the actual symbol value (such as ‘-’)

• If you are asserting the value of a signal/port and you don’t care about its value, set it to the “safe” option
• For example, if you're not writing, always set the signal to indicate a read operation

• All Boolean operators will operate of signals of type std_logic or std_ulogic

• Must use a library to enable access to std_logic and std_ulogic
• library ieee;

• use ieee.std_logic_1164.all;

• We will use std_logic in all cases rather than bit
• Actually, as we will see shortly, we will use std_ulogic

67

Declaring New Data Types

• New data types can be created that are based on existing types, but
can be referenced through a simple name

• VHDL code is:

 type byte is array (7 downto 0) of bit;
 or

 type byte is array (7 downto 0) of std_logic;

68

Data Types

bit
bit_vector
std_logic (multiple outputs of std_logic are allowed to be
std_logic_vector connected together and are resolved; unsigned)
std_ulogic (multiple outputs of std_ulogic are not allowed
std_ulogic_vector to be connected together; unsigned)
integer (defaults to 32 bits in width; range can be specified)
 natural (subtype of integer constrained to be non-negative)
 positive (subtype of integer constrained to be greater than zero)
signed
unsigned
boolean (values are TRUE and FALSE; TRUE is equivalent to 1
 and FALSE is equivalent to 0)
enumeration type
constant data object

69

More Specific Information about std_ulogic

• std_logic is a subtype of std_ulogic

• For std_logic, a resolution function allows multiple drivers to a single
signal
• In such a case, the resolution function determines the result

• More specifically, we will use std_ulogic in all cases rather than bit or
std_logic
• By using std_ulogic, Quartus will complain if there are multiple drivers to a

std_ulogic signal

70

Integer Type

integer range min_value to max_value

 integer range max_value downto min_value

71

Type Abbreviations Used in the Following
Conversion Function Slide
• B means that the argument is of bit type

• BV means that the argument is of bit_vector type

• I means that the argument is of integer type

• S means that the argument is of signed type

• U means that the argument is of unsigned type

• SLV means that the argument is of std_logic_vector type

• SULV means that the argument is of std_ulogic_vector type

72

Type Casting and Type Conversion Functions

• See the previous slide for argument type
abbreviations

• Type casting functions
• signed to std_logic_vector: std_logic_vector(S)
• std_logic_vector to signed: signed(SLV)
• signed to std_ulogic_vector: std_ulogic_vector(S)
• std_ulogic_vector to signed: signed(SULV)

• unsigned to std_logic_vector: std_logic_vector(U)
• std_logic_vector to unsigned: unsigned(SLV)
• unsigned to std_ulogic_vector:

std_ulogic_vector(U)
• std_ulogic_vector to unsigned: unsigned(SULV)

• bit to std_ulogic: To_StdULogic(B)
• bit_vector to std_logic_vector:

To_StdLogicVector(BV)

• std_ulogic_vector to std_logic_vector:
To_StdLogicVector(SULV)

• bit_vector to std_ulogic_vector:
To_StdULogicVector(BV)

• std_logic_vector to std_ulogic_vector:
To_StdULogicVector(SLV)

• Type conversion functions
• signed to integer: to_integer(S)
• integer to signed: to_signed(I, S'length)
• unsigned to integer: to_integer(U)
• integer to unsigned: to_unsigned(I, U'length)

• Must use a library to enable access to numeric
conversion functions
• library ieee;
• use ieee.numeric_std.all;

73

Resize Function

• Also in ieee.numeric_std is the “resize” function
• function resize(arg: signed; new_size: natural) return signed;
• function resize(arg: unsigned; new_size: natural) return unsigned;

• The first argument “arg” is resized to occupy “new_size” bits

• If “arg” is extended, additional more-significant bits are added
• If “arg” is signed, then the sign bit is extended into the more-significant bits
• If “arg” is unsigned, then zero bits are extended into the more-significant bits

• Must use a library to enable access to the “resize” function
• library ieee;
• use ieee.numeric_std.all;

74

Enumeration Data Type

• User can specify the possible values for a type

 type enumeration_type_name is (name1 { , name2 })

75

Constant Data Object

• A constant has a fixed value that cannot be changed

• It is not mapped to a wire in a circuit

 constant constant_name : type_name := constant_value ;

76

Signals

• Signals that are not used in an interface to an entity can be declared at the
beginning of an architecture and then used within that architecture

• Signals can be used inside or outside processes
• Signals are declared in the architecture section before the keyword begin

• An initial value can be given in the declaration for all signals declared in the
declaration

 signal identifier { , … } : subtype_indication
 [:= expression] ;

{ <contents> } means zero or more repetitions of <contents>
[<contents>] means that <contents> is optional
… means that the category immediately preceding the left brace may be repeated separated by the
specified delimeter

77

Example of Declaring Signals

• An example of declaring a signal (that isn’t a port of an entity) is
shown above in the structural architecture of the
comparator4BitStdUlogicSeveral entity

78

Variables

• Assignment to a variable immediately overwrites the variable with a new value
• In comparison, assignment to a signal takes place immediately in combinational code, but

schedules a new value to be applied to the signal at some later time in sequential code

• In general, signals are used to create flip-flops and memory devices; variables are used to
wire together gates in a synthesized circuit
• Use variables to describe connections in a circuit that cannot be described using signals and VHDL

operators

• Variables can be used only inside processes
• Variables are declared after the keyword process and before the keyword begin

• We will reserve the use of variables to (1) describing how signals are connected together
in for loops and (2) wiring values to be assigned in different FSM cases

• An initial value can be given when the variable is declared

79

Variable Assignment Statement

• Replace the current value of a variable with a new value specified by
an expression

 <target> := <expr> ;

• Note that variable assignment uses the := operator rather than the <=
operator used for signals

80

Example of Using Variables with Instantiation

• An example of declaring and using a variable is shown above in the
behavioral_loop architecture of the comparator4BitStdUlogicSeveral
entity

81

Using VHDL to Implement an FSM (1 of 5)

• We’ll look at an example in debounceSwitch.vhd

• We’ll use an FSM to debounce slide switches
• This will be our first use of a clock

• The DE2-70 furnishes a 28.86 MHz clock on pin E16

• The DE2-70 furnishes a 50 MHz clock on pins AD15, D16, R28, and R3

• The DE2-115 furnishes a 50 MHz clock on pins Y2, AG14, and AG15

• This clock will be used to cause our FSM state transitions

• We’ll implement a debounced version of
invertSegmentEdgeNotDebounced.vhd

82

Using VHDL to Implement an FSM (2 of 5)

• Entity declaration is

library ieee;
use ieee.std_logic_1164.all;

entity debounceSwitch is
 port (reset, invert: in std_ulogic;
 segment: buffer std_ulogic;
 clock: in std_ulogic);
end entity debounceSwitch;

83

Using VHDL to Implement an FSM (3 of 5)

• Architecture declaration is

architecture behavioral of debounceSwitch is
 attribute chip_pin: string;
 attribute chip_pin of clock: signal is "Y2";
 attribute chip_pin of invert: signal is "Y24";
 attribute chip_pin of reset: signal is "Y23";
 attribute chip_pin of segment: signal is "AD17";
 type StateType is (idle, countWhileEngaged, limitWhileEngaged,
 countWhileDisengaged);
 signal presentState: StateType := idle;
 -- signal counter: integer range 0 to 721_500 := 0; -- 25 ms with 28.86 MHz clock
 signal counter: integer range 0 to 1_250_000 := 0; -- 25 ms with 50 MHz clock

84

Using VHDL to Implement an FSM (4 of 5)

• We use an enumerated type to define the different FSM states

• For example, in debounceSwitch.vhd, we define type StateType as
type StateType is (idle, countWhileEngaged, limitWhileEngaged,
countWhileDisengaged);

• We define a signal for the current state
signal presentState: StateType := idle;

• And, we initialize it for the start state

85

Using VHDL to Implement an FSM (5 of 5)

• Use a case statement inside a process for the FSM

• Use a variable to wire together the alternatives for next state

stateMachine: process is
 variable newState: StateType;
 begin
 wait until rising_edge(clock);
 case presentState is
 when idle =>
 counter <= 0;
 if reset = '1' then -- slide switch up
 segment <= '1';
 newState := idle;
 else
 if invert = '1' then -- slide switch up
 segment <= not segment;
 newState := countWhileEngaged;

 else
 newState := idle;
 end if;
 end if;
 when countWhileEngaged =>
 counter <= counter+1;
 if counter >= counter'high then
 newState := limitWhileEngaged;
 else
 newState := countWhileEngaged;
 end if;
 when limitWhileEngaged =>
 counter <= 0;
 if invert = '0' then -- slide switch down

 newState := countWhileDisengaged;
 else
 newState := limitWhileEngaged;
 end if;
 when countWhileDisengaged =>
 counter <= counter+1;
 if counter >= counter'high then
 newState := idle;
 else
 newState := countWhileDisengaged;
 end if;
 end case;
 presentState <= newState;
 end process stateMachine;

86

Using Configuration to Select One of Several
Architectures
• By default, the last architecture found that matches the entity

specification will be selected

• To select a different architecture, use the configuration statement as
follows

configuration config_name of x_entity is
 for x_arch
 end for;
end config_name;

• In general, having multiple architectures for an entity is unnecessary

87

Using a User-Defined Library

• A sub-directory may be created that contains files, each one of which includes an
entity and an architecture

• Those entities can then be accessed from VHDL files in the main directory by
declaring the library (in this case, the sub-directory is named support) and then
referring to each entity with a qualified name, as follows:

library support;

dig7: support.sevenSegmentDecoder port map (
 value => data(15 downto 12),
 segments => sevenSegment7);

• Remember to add the VHDL files in the sub-directory to the project using
Quartus’ “Add Files”

88

	Slide 1: VHDL
	Slide 2: Introduction
	Slide 3: VHDL Mindset
	Slide 4: Entity Declaration
	Slide 5: Entity Buffer Port
	Slide 6: Notes about DE2 LEDs
	Slide 7: Notes about DE2 Pushbuttons
	Slide 8: Architecture Description
	Slide 9: Creating a Complete VHDL Program (buttonfunctions.vhd)
	Slide 10: Using the Altera/Terasic Hardware
	Slide 11: Using Quartus Prime Lite Edition
	Slide 12: Create a New Project (1 of 6)
	Slide 13: Create a New Project (2 of 6)
	Slide 14: Create a New Project (3 of 6)
	Slide 15: Create a New Project (4 of 6)
	Slide 16: Create a New Project (5 of 6)
	Slide 17: Create a New Project (6 of 6)
	Slide 18: Set Project Options
	Slide 19: Build the Project
	Slide 20: Make Pin Assignments
	Slide 21: Program the Hardware with your Design
	Slide 22: Quick DE2 Kit Information
	Slide 23: Alternate Way to Set Pin Assignments
	Slide 24: Operators
	Slide 25: More Specific Information of VHDL
	Slide 26: Simple Signal Assignment Syntax
	Slide 27: Concurrent Assignment Statements
	Slide 28: Selected Signal Assignment
	Slide 29: Conditional Signal Assignment
	Slide 30: Concurrent Assignment Ordering
	Slide 31: Processes
	Slide 32: Process Syntax
	Slide 33: Processes
	Slide 34: Using attribute chip_pin
	Slide 35: Process Example (buttontoled.vhd)
	Slide 36: Process Example (reg.vhd)
	Slide 37: Use of Array in reg.vhd
	Slide 38: If Statement
	Slide 39: Case Statement
	Slide 40: Wait Statement
	Slide 41: Signal Attributes
	Slide 42: Wait Conditions
	Slide 43: Process Example Using rising_edge (regstdulogic.vhd)
	Slide 44: Example of Setting Pin Assignments When Using a Vector
	Slide 45: Logical and Arithmetic
	Slide 46: Literal Values
	Slide 47: Attributes of Values in Scalar Types
	Slide 48: Attributes of Values in Array Types
	Slide 49: Attributes of Types
	Slide 50: Example of Using Type Attribute Pos
	Slide 51: Example of Using Type Attribute Val
	Slide 52: Instantiation of Components
	Slide 53: Create Components for Instantiation
	Slide 54: Write All Components That Are Part of a Package
	Slide 55: File declaring Package
	Slide 56: Using Components in Package (1 of 6)
	Slide 57: Using Components in Package (2 of 6)
	Slide 58: Using Components in Package (3 of 6)
	Slide 59: Using Components in Package (4 of 6)
	Slide 60: Using Components in Package (5 of 6)
	Slide 61: Using Components in Package (6 of 6)
	Slide 62: Instantiation of Components
	Slide 63: Inclusion of “formal_name =>” in a port map statement
	Slide 64: Observations about Component Instantiation
	Slide 65: Vector Data Type
	Slide 66: Vector Example (comparator4bitstdulogic.vhd)
	Slide 67: Extended Bit Data Type
	Slide 68: Declaring New Data Types
	Slide 69: Data Types
	Slide 70: More Specific Information about std_ulogic
	Slide 71: Integer Type
	Slide 72: Type Abbreviations Used in the Following Conversion Function Slide
	Slide 73: Type Casting and Type Conversion Functions
	Slide 74: Resize Function
	Slide 75: Enumeration Data Type
	Slide 76: Constant Data Object
	Slide 77: Signals
	Slide 78: Example of Declaring Signals
	Slide 79: Variables
	Slide 80: Variable Assignment Statement
	Slide 81: Example of Using Variables with Instantiation
	Slide 82: Using VHDL to Implement an FSM (1 of 5)
	Slide 83: Using VHDL to Implement an FSM (2 of 5)
	Slide 84: Using VHDL to Implement an FSM (3 of 5)
	Slide 85: Using VHDL to Implement an FSM (4 of 5)
	Slide 86: Using VHDL to Implement an FSM (5 of 5)
	Slide 87: Using Configuration to Select One of Several Architectures
	Slide 88: Using a User-Defined Library

