Laws and Theorems of Boolean Logic

Prof. James L. Frankel Harvard University

Version of 10:14 AM 2-Dec-2021 Copyright © 2021, 2020, 2017, 2016 James L. Frankel. All rights reserved.

Axioms of Boolean Algebra (1 of 4)

- Axiom 0
 - Set of elements, B
 - Two binary operators, + and \cdot
 - One unary operator, '
- Axiom 1
 - Set B contains at least two elements a and b s.t. a ≠ b

Axioms of Boolean Algebra (2 of 4)

- Axiom 2 *Closure*
 - For every a and b in B,
 - a + b is in B
 - $a \cdot b$ is in B
- Axiom 3 *Commutative laws*
 - For every a and b in B,
 - a + b = b + a
 - $a \cdot b = b \cdot a$

Axioms of Boolean Algebra (3 of 4)

- Axiom 4 Associative laws
 - For every a, b, and c in B,
 - (a + b) + c = a + (b + c) = a + b + c
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$
- Axiom 5 *Identities*
 - There exists an identity element with respect to +, designated by 0, s.t.
 - a + 0 = a, for every a in B
 - There exists an identity element with respect to \cdot , designated by 1, s.t.
 - $a \cdot 1 = a$, for every a in B

Axioms of Boolean Algebra (4 of 4)

- Axiom 6 *Distributive laws*
 - For every a, b, and c in B,
 - $a + (b \cdot c) = (a + b) \cdot (a + c)$
 - $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- Axiom 7 *Complement*
 - For each a in B, there exists an element a' in B (the complement of a) s.t.
 - a + a' = 1
 - a · a' = 0

Order of Evaluation of Boolean Expressions

- In a Boolean expression without parentheses,
 - Complement is always applied first
 - then, AND is applied
 - finally, OR is applied
- Operations in sub-expressions within parentheses are always applied before operations between parenthesized expressions
- Equivalently, we say that parentheses have highest precedence, followed by complementation, followed by AND, then finally by OR

Literals and Simplification

- In a Boolean expression, each variable's appearance in either its noncomplemented or complemented form is called a *literal*. A literal represents the connection of a variable or its complement to a unique gate input. Do *not* include the output variable.
- If E₁ and E₂ are two expressions for the same Boolean function (*i.e.*, they have the same truth table), we say that E₂ is simpler than E₁ if it contains fewer literals
- For example, the expression:

 $Sum = ABCarry_{in} + ABCarry_{in} + ABCarry_{in} + ABCarry_{in}$

contains 3 variables (A, B, and Carry_{in}) and 12 literals

Duality

- Every expression in Boolean logic has a **dual expression** that is formed by
 - Replacing every AND operator by an OR operator, and vice versa
 - Replacing every constant 0 by 1, and vice versa
 - Be sure to not change the order of operations when replacing AND by OR and vice versa (*i.e.,* assume every operation is parenthesized)
- For every *statement* of Boolean logic that is true, its *dual* is also true
- For example, x + 0 = x is true
- $(x + 0 = x)^{D}$ which is $x \cdot 1 = x$ is also true
- In the following laws and theorems, we will present the *dual* with a D suffix

Observation on Duality

- Does *duality* remind you of *active-high* vs. *active-low* logic?
 - It should!

Other Theorems That Can be Derived from the Laws and Theorem Above

• All of the Theorems that follow can be derived from the Axioms, Laws, and Theorems given above

Operations with 0 and 1

- 1. x + 0 = x
- 1D. x · 1 = x
- 2. x + 1 = 1
- 2D. $x \cdot 0 = 0$

Idempotent Theorem

- 3. x + x = x
- 3D. $x \cdot x = x$

Involution Theorem

• 4. (x')' = x

Theorem of Complementarity

- 5. x + x' = 1
- 5D. $x \cdot x' = 0$

Commutative Law

- 6. x + y = y + x
- 6D. $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$

Associative Law

- 7. (x + y) + z = x + (y + z) = x + y + z
- 7D. $(x \cdot y) \cdot z = x \cdot (y \cdot z) = x \cdot y \cdot z$

Distributive Law

- 8. $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
- 8D. $x + (y \cdot z) = (x + y) \cdot (x + z)$

Simplification Theorems

- 9. $x \cdot y + x \cdot y' = x$
- 9D. $(x + y) \cdot (x + y') = x$
 - Notice the insertion of parentheses to ensure that the order of operations has not changed
- 10. x + x·y = x
- 10D. $x \cdot (x + y) = x$
 - Once again, notice the insertion of parentheses to ensure that the order of operations has not changed
- 11. $(x + y') \cdot y = x \cdot y$
- 11D. x·y' + y = x + y

DeMorgan's Law

- 12. $(x + y + z + ...)' = x' \cdot y' \cdot z' \cdot ...$
- 12D. $(x \cdot y \cdot z \cdot ...)' = x' + y' + z' + ...$

General Form of DeMorgan's Law

• 13. {
$$f(x_1, x_2, ..., x_n, 0, 1, +, \cdot)$$
}' = $f(x_1', x_2', ..., x_n', 1, 0, \cdot, +)$

Duality

- 14. $(x + y + z + ...)^{D} = x \cdot y \cdot z \cdot ...$
- 14D. $(x \cdot y \cdot z \cdot ...)^{D} = x + y + z + ...$

General Form of Duality

• 15. {
$$f(x_1, x_2, ..., x_n, 0, 1, +, \cdot)$$
}^D = $f(x_1, x_2, ..., x_n, 1, 0, \cdot, +)$

Theorem for Multiplying and Factoring

- 16. $(x + y) \cdot (x' + z) = x \cdot z + x' \cdot y$
- 16D. $x \cdot y + x' \cdot z = (x + z) \cdot (x' + y)$

Consensus Theorem

- 17. $x \cdot y + y \cdot z + x' \cdot z = x \cdot y + x' \cdot z$
- 17D. $(x + y) \cdot (y + z) \cdot (x' + z) = (x + y) \cdot (x' + z)$