Gray Codes & Karnaugh Maps

Prof. James L. Frankel Harvard University

Version of 10:16 AM 2-Dec-2021 Copyright © 2021, 2017, 2016 James L. Frankel. All rights reserved.

Gray Code Ordering

- A sequence of *n*-bit codes in which only one bit changes at each transition
 - Must include the transition from the last to the first in the sequence as well
 - May be used to ensure that at each transition, there can never be an issue of multiple bits changing at slightly different times
 - In a clocked synchronous system, this is not an issue because we do not look at the signals while they are in transition

Two-Bit Gray Code Sequence

Three-Bit Gray Code Sequence

Gray Code Properties

- Possible to select a power-of-two subsequence of values in a gray code ordering by looking at some of the bits
- This can be used to *cover* some of the values as we'll see

Three-Bit Gray Code Subsequences of Length Four

- Reference the three bits as ABC, for example
- Select A = 0
- Select A = 1
- Select B = 0
- Select B = 1
- Select C = 0
- Select C = 1

Three-Bit Gray Code Subsequences of Length Four

- Reference the three bits as ABC, for example
- Select A = 0
- Select A = 1
- Select B = 0
- Select B = 1
- Select C = 0
- Select C = 1

Three-Bit Gray Code Subsequences of Length Four

- Reference the three bits as ABC, for example
- Select A = 0
- Select A = 1
- Select B = 0
- Select B = 1
- Select C = 0
- Select C = 1

Three-Bit Gray Code Subsequences of Length Two

• Reference the three bits as ABC, for example 000 001 • Select AB = 00 011 010 • Select AB = 01110 • Select AB = 11 111 101 • Select AB = 10100

Three-Bit Gray Code Subsequences of Length Two

- Reference the three bits as ABC, for example 000 001 • Select AC = 00 011 010 • Select AC = 01 110 • Select AC = 11 111 101 • Select AC = 10100

Three-Bit Gray Code Subsequences of Length Two

• Reference the three bits as ABC, for example 000 001 • Select BC = 00 011 010 • Select BC = 01 110 • Select BC = 11 111 101 • Select BC = 10100

Two Literal Karnaugh (or K-) Map

Three Literal Karnaugh (or K-) Map

Four Literal Karnaugh (or K-) Map

14

Observations about Karnaugh Maps

• The K-Map graphically exhibits the adjacencies that are present in the gray code ordering

Full Adder K-Maps

В

16

Find Covering Rectangles

Create Simplified Expression

В

Compare Sum-of-Products and Simplified Expressions

- Sum-of-Products
 - Carry_{out} = ABCarry_{in} + (~A)BCarry_{in} + A(~B)Carry_{in} + AB(~Carry_{in})
 - Four terms
 - Each with three literals
- Simplified
 - Carry_{out} = AB + ACarry_{in} + BCarry_{in}
 - Three terms
 - Each with two literals