
Finite State Machines
Prof. James L. Frankel

Harvard University

Version of 10:32 AM 2-Dec-2021
Copyright © 2021, 2016 James L. Frankel.  All rights reserved.



Introduction

• A Finite State Machine, or FSM, is an abstraction used to model a 
device that can be in any one of a fixed number of states

• While in each state, the FSM produces one or more outputs

• Some event causes a transition from state to state

• The selection of a new state can be affected by inputs

• In some sense, this is exactly the same functionality that a program or 
a computer has

2



State

• We will represent where we are executing with a state number

• The state number will be a binary number

3



Transition

• Our transitions will be caused by a regularly occurring pulse
• We refer to this pulse as a clock

4



Moore FSM

• Outputs are determined based on the current state

• Each next state is a function of the current state and the current 
inputs

5



Moore FSM Block Diagram

State Register

Outputs

Combinational 
Logic

Inputs

Combinational 
Logic

Clock

6



Moore FSM Observations

• Outputs change synchronously with the clock edge

7



Mealy FSM

• Outputs are determined based on the current state and the current 
inputs

• Each next state is a function of the current state and the current 
inputs

8



Mealy FSM Block Diagram

State Register

Outputs

Combinational 
Logic

Inputs

Combinational 
Logic

Clock

9



Simplified Mealy FSM Block Diagram

State Register

Outputs

Inputs

Combinational Logic

Clock

10



Mealy FSM Observations

• Outputs change asynchronously to the clock edge because they are 
affected by changes to the inputs (as well as by changes to the state)

11



Comparing Moore and Mealy FSMs

• Often a Moore FSM has a simplified design at the cost of requiring 
more states

• The Moore FSM has outputs that change synchronously with the 
clock

• Often a Mealy FSM requires fewer states
• That can reduce the number of bits required to store the state number

• It is possible to design either a Moore or a Mealy FSM to exhibit 
similar functionality

12



State Transition Diagrams

• Single designated start state

• Our FSMs will run forever

• Our FSMs will be deterministic
• Only one possible transition from each state with given input conditions

• Edges (or arcs) show all possible transitions
• Edges are labelled with the input conditions that cause the transition
• Some inputs can be labelled as don’t-care on the arc

• Moore FSM
• Outputs are associated with each state
• Each state label/number is followed by a slash, followed by the outputs

• Mealy FSM
• Outputs are associated with each edge
• Each edge is labelled with the input conditions, followed by a slash, followed by the outputs

13



State Transition Diagrams

• Remember to include self-loops when staying in the same state

• Cover all possible transitions
• That is, from each state, be sure to cover all input combinations

• Using don’t-cares can reduce the number of transitions
• Reducing the number of transitions can simplify the logic required to implement the FSM

14



Designing an FSM to Recognize a String of Bits

• Assumptions
• There is only one binary input

• The input is stable before and after the rising edge of the clock
• That is, the input meets the set-up and hold requirements

• Sequential inputs arrive on sequential clock pulses
• That is, the inputs are synchronous to the clock

15



Moore FSM to Recognize 1001

• State transition diagram

• Output high indicates
that 1001 has been seen

• Overlapping strings are
acceptable

0 / 0

1 / 0

2 / 0

3 / 0

Start

1

0

0

4 / 1

1

0

1

10

0

1

16



Mealy FSM to Recognize 1001

• State transition diagram

• Output high indicates
that 1001 has been seen

• Overlapping strings are
acceptable

0

1

2

3

Start

1 / 0

0 / 0

0 / 0

0 / 0

1 / 0

1 / 00 / 0

1 / 1

17



Moore FSM NextState Truth Table

State2 State1 State0 Input NextState2 NextState1 NextState0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 0 1

0 1 0 0 0 1 1

0 1 0 1 0 0 1

0 1 1 0 0 0 0

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 0 1

18



Moore FSM NextState Truth Table with 
Decimal States
State Input NextState

0 0 0

0 1 1

1 0 2

1 1 1

2 0 3

2 1 1

3 0 0

3 1 4

4 0 2

4 1 1

19



Moore FSM Output Truth Table

State2 State1 State0 Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

20



Moore FSM Output Truth Table with Decimal 
States
State Output

0 0

1 0

2 0

3 0

4 1

21



Mealy FSM Truth Table

State1 State0 Input NextState1 NextState0 Output

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1

22



Mealy FSM Truth Table with Decimal States

State Input NextState Output

0 0 0 0

0 1 1 0

1 0 2 0

1 1 1 0

2 0 3 0

2 1 1 0

3 0 0 0

3 1 1 1

23



FSM as a Computer

• An FSM accepts inputs, produces outputs, follows a predetermined 
“program” (the state transition diagram)

• This is the definition of a computer!

• Only difference: an FSM is not reprogrammable

24



Using an FSM as our Processor’s Sequencer

• We can use an FSM to transition on clock pulses
• Each FSM transition corresponds to a cycle in the execution of an instruction

• Each state transition will be based on inputs which can be
• Opcode bits of the IR register

• Modifier bits of the instruction in the IR register

• Various status bits (ALU status (zero, sign, carryout, overflow)

• Outputs will control the data path
• Enable lines to control loading registers

• Control lines for functional units (memory, register array)

• Function lines to control the ALU

25



Using an FSM as a Control Unit

• Similarly to a sequencer in a computer, an FSM can be used as a 
control unit in any device

• Examples,
• A dishwasher
• An elevator
• A digital radio
• A disk drive controller

• An FSM can be more responsive (i.e., an FSM can run its program 
more quickly) than can a programmable microcontroller
• An FSM may be a better choice when high speed processing is important

26


