
Comparators
Prof. James L. Frankel

Harvard University

Version of 5:49 PM 12-Nov-2024
Copyright © 2024, 2021, 2020 James L. Frankel. All rights reserved.

Circuit to Determine If a 4-bit Value is Zero

2

4-Bit Zero
Detector

R

A3 A0A2 A1

4-Bit Zero
Detector

R

A3 A0A2 A1

Circuit to Compare Two 4-bit Values for
Equality

A2

B1

A3

4-Bit Equality Comparator

A0 A1
B0

B3B2

R

3

Signed Overflow from an Adder

• Signed overflow occurs from an adder while performing addition
when
• The sign of the result does not have the same sign as the operands

Or, in other words:

• The operands are both positive, but the result is negative; or

• The operands are both negative, but the result is positive

• Signed addition cannot overflow when
• The operands are of opposite signs

4

Circuit to Detect Overflow from a 4-bit Adder

5

4-Bit Signed Addition
Overflow Detector

A3

B3

A & B are both
positive, result
is negative

A & B are both
negative, result
is positive

R3

Overflow

Signed Overflow from an Adder when
performing Subtraction
• minuend – subtrahend

• Signed overflow occurs from an adder while performing subtraction when
• The operands are of opposite signs, but the result does not appear to have the same

sign as the minuend
Or, in other words:

• The minuend is positive and the subtrahend is negative, but the result is negative; or
• The minuend is negative and the subtrahend is positive, but the result is positive

• Signed subtraction cannot overflow when
• The operands are of the same sign

6

4-Bit Signed Subtraction
(A-B) Overflow Detector

A3

B3

A is negative &
B is positive,
result is
positive

A is positive &
B is negative,
result is
negative

R3

Overflow

If A & B have
same signs,
then overflow
cannot occur

Circuit to Detect Overflow from a 4-bit
Subtractor

7

MIPS sltu and slt Instructions

• MIPS instructions
• sltu rd, rs, rt
• slt rd, rs, rt

• Behavior
• SLT: Set on Less Than

• Compare as signed 32-bit integers
• Result is 1 if true, 0 if false

• SLTU: Set on Less Than Unsigned
• Compare as unsigned 32-bit integers
• Result is 1 if true, 0 if false

• GPR[rd] <- (GPR[rs] < GPR[rt])

8

Unsigned comparison: sltu

• result is 1 if: GPR[rs] <UNSIGNED GPR[rt] and 0 otherwise

• GPR[rs] - GPR[rt] <UNSIGNED GPR[rt] - GPR[rt]

• GPR[rs] - GPR[rt] <UNSIGNED 0

• result is 1 if: GPR[rs] + ~GPR[rt] + 1 <UNSIGNED 0 and 0 otherwise

• Let’s look at several values near each other in magnitude

9

Unsigned Comparison: 3<2 (0003 < 0002)

• In hexadecimal:

• 0003 < 0002 ?

• 0003 - 0002

• 0003 + ~0002 + 1

• 0003 + FFFD + 1

• result == 0001

• carryOutMSB == 1

• FALSE: 3 < 2

10

Unsigned Comparison: 3<3 (0003 < 0003)

• In hexadecimal:

• 0003 < 0003 ?

• 0003 - 0003

• 0003 + ~0003 + 1

• 0003 + FFFC + 1

• result == 0000

• carryOutMSB == 1

• FALSE: 3 < 3

11

Unsigned Comparison: 3<4 (0003 < 0004)

• In hexadecimal:

• 0003 < 0004 ?

• 0003 - 0004

• 0003 + ~0004 + 1

• 0003 + FFFB + 1

• result == FFFF

• carryOutMSB == 0

• TRUE: 3 < 4

12

Unsigned Comparison: 65535<0 (FFFF < 0000)

• In hexadecimal:

• FFFF < 0000 ?

• FFFF - 0000

• FFFF + ~0000 + 1

• FFFF + FFFF + 1

• result == FFFF

• carryOutMSB == 1

• FALSE: 65535 < 0

13

Unsigned Comparison: 65535<65535 (FFFF <
FFFF)
• In hexadecimal:

• FFFF < FFFF ?

• FFFF - FFFF

• FFFF + ~FFFF + 1

• FFFF + 0000 + 1

• result == 0000

• carryOutMSB == 1

• FALSE: 65535 < 65535

14

Unsigned Comparison: 65535<65534 (FFFF <
FFFE)
• In hexadecimal:

• FFFF < FFFE ?

• FFFF - FFFE

• FFFF + ~FFFE + 1

• FFFF + 0001 + 1

• result == 0001

• carryOutMSB == 1

• FALSE: 65535 < 65534

15

Unsigned Comparison: 0<65535 (0000 < FFFF)

• In hexadecimal:

• 0000 < FFFF ?

• 0000 - FFFF

• 0000 + ~FFFF + 1

• 0000 + 0000 + 1

• result == 0001

• carryOutMSB == 0

• TRUE: 0 < 65535

16

Unsigned Comparison: 0<0 (0000 < 0000)

• In hexadecimal:

• 0000 < 0000 ?

• 0000 - 0000

• 0000 + ~0000 + 1

• 0000 + FFFF + 1

• result == 0000

• carryOutMSB == 1

• FALSE: 0 < 0

17

Unsigned Comparison: 0<1 (0000 < 0001)

• In hexadecimal:

• 0000 < 0001 ?

• 0000 - 0001

• 0000 + ~0001 + 1

• 0000 + FFFE + 1

• result == FFFF

• carryOutMSB == 0

• TRUE: 0 < 1

18

Using Subtraction to Determine Result of sltu

• So, if you’re trying to determine the answer for
• sltu rd, rs, rt

• by computing
• GPR[rs] - GPR[rt]

• by using an adder to compute
• GPR[rs] + ~GPR[rt] + 1

• then, sltu’s result is 1 when carryOutMSB == 0 and 0 otherwise

• Reminder: This is performing subtraction by adding the two’s-
complement of the value being subtracted

19

PDP-11 Compare Instructions

• PDP-11 Compare Instructions
• CMP source, destination

• 16-bit word version
• CMPB source, destination

• 8-bit byte version

• CMP(B) is executed as if src -SIGNED dest
• The PDP-11 has a subtractor in addition to an adder

• The C (Carry) flag and the V (oVerflow) flag are set appropriately for a subtractor (not an adder)
• As a result,

• C (Carry) flag is set if there is a borrow from the MSB
• i.e., if (src + ~dest + 1) < 2^16

• V (oVerflow) flag is set if there is arithmetic overflow
• i.e., if operands are of opposite signs and the sign of the destination is the same as the sign of the result

• Z (Zero) flag is set if the result == 0
• N (Negative) flag is set if the result < 0

20

PDP-11 Unsigned Branch Instructions

• The following instructions would follow a CMP or CMPB instruction
• PDP-11 Unsigned Branch Instructions

• BHI Branch if higher
• Branch if source >UNSIGNED destination
• Branch if the previous operation causes neither a carry nor a zero (equal) result: !c & !z

• BLOS Branch if lower or same
• Branch if source <=UNSIGNED destination
• Branch if the previous operation causes carry to be set or zero to be set: c | z

• BHIS Branch if higher or same
• Branch if source >=UNSIGNED destination
• Branch if the previous operation causes carry to be 0: !c

• BLO Branch if lower
• Branch if source <UNSIGNED destination
• Branch if the previous operation causes carry to be set: c

21

Signed comparison: slt

• result is 1 if: GPR[rs] < GPR[rt] and 0 otherwise

• GPR[rs] - GPR[rt] < GPR[rt] - GPR[rt]

• GPR[rs] - GPR[rt] < 0

• result is 1 if: GPR[rs] + ~GPR[rt] + 1 < 0 and 0 otherwise

• We know that comparing for "< 0" is the same as checking the sign bit

• But, the problem is that overflows can occur and they can cause the sign
bit to not indicate the sign of the result

• The appropriate Boolean expressions for the PDP-11 follow

22

PDP-11 Signed Branch Instructions

• The following instructions would follow a CMP or CMPB instruction

• PDP-11 Signed Branch Instructions
• BGE Branch if greater-than or equal

• Branch if source >=SIGNED destination
• Branch if the previous operation causes either both N and V clear or both set:
 (n == v) or (n eqv v)

• BGT Branch if greater-than
• Branch if source >SIGNED destination
• Branch if the previous operation causes Z to be clear and N is that same as V:
 (!z & (n == v)) or (!z & (n eqv v))

• BLE Branch if less-than or equal
• Branch if source <=SIGNED destination
• Branch if the previous operation causes Z to be set or if N does not equal V:
 z | (n xor v)

• BLT Branch if less-than
• Branch if source <SIGNED destination
• Branch if the previous operation causes N xor V to be 1:
 n xor v

23

Patterson & Hennessy: Computer
Organization & Design, MIPS Edition, 6th Ed.
• Appendix B, Section B.5, page B-721: Tailoring the 32-Bit ALU to MIPS

• Starts discussion about slt and sltu instructions

• Appendix B, Section B.5, Figure B.5.10, page B-723: Bit-slice ALU to
perform AND, OR, addition, and set-on… instructions
• Top schematic shows how to use the output mux in the bit-slice ALU to select

an input named “Less” for set-on-… instructions

• The result of a set-on- instruction should have the value 0 or 1

• So, clearly the least-significant bit (LSB) of the ALU should be either 0 or 1
depending on the false or true result; All other bits should always be 0

24

Signed Comparison: 3<2 (0003 < 0002)

• In hexadecimal:

• 0003 < 0002 ?

• 0003 - 0002

• 0003 + ~0002 + 1

• 0003 + FFFD + 1

• result == 0001

• carryOutMSB == 1

• resultMSB = 0

• FALSE: 3 < 2

25

Signed Comparison: 3<3 (0003 < 0003)

• In hexadecimal:

• 0003 < 0003 ?

• 0003 - 0003

• 0003 + ~0003 + 1

• 0003 + FFFC + 1

• result == 0000

• carryOutMSB == 1

• resultMSB = 0

• FALSE: 3 < 3

26

Signed Comparison: 3<4 (0003 < 0004)

• In hexadecimal:

• 0003 < 0004 ?

• 0003 - 0004

• 0003 + ~0004 + 1

• 0003 + FFFB + 1

• result == FFFF

• carryOutMSB == 0

• resultMSB = 1

• TRUE: 3 < 4

27

Signed Comparison: -1<0 (FFFF < 0000)

• In hexadecimal:

• FFFF < 0000 ?

• FFFF - 0000

• FFFF + ~0000 + 1

• FFFF + FFFF + 1

• result == FFFF

• carryOutMSB == 1

• resultMSB = 1

• TRUE: -1 < 0

28

Signed Comparison: -1<-1 (FFFF < FFFF)

• In hexadecimal:

• FFFF < FFFF ?

• FFFF - FFFF

• FFFF + ~FFFF + 1

• FFFF + 0000 + 1

• result == 0000

• carryOutMSB == 1

• resultMSB = 0

• FALSE: -1 < -1

29

Signed Comparison: -1<-2 (FFFF < FFFE)

• In hexadecimal:

• FFFF < FFFE ?

• FFFF - FFFE

• FFFF + ~FFFE + 1

• FFFF + 0001 + 1

• result == 0001

• carryOutMSB == 1

• resultMSB = 0

• FALSE: -1 < -2

30

Signed Comparison: 0<-1 (0000 < FFFF)

• In hexadecimal:

• 0000 < FFFF ?

• 0000 - FFFF

• 0000 + ~FFFF + 1

• 0000 + 0000 + 1

• result == 0001

• carryOutMSB == 0

• resultMSB = 0

• FALSE: 0 < -1

31

Signed Comparison: 0<0 (0000 < 0000)

• In hexadecimal:

• 0000 < 0000 ?

• 0000 - 0000

• 0000 + ~0000 + 1

• 0000 + FFFF + 1

• result == 0000

• carryOutMSB == 1

• resultMSB = 0

• FALSE: 0 < 0

32

Signed Comparison: 0<1 (0000 < 0001)

• In hexadecimal:

• 0000 < 0001 ?

• 0000 - 0001

• 0000 + ~0001 + 1

• 0000 + FFFE + 1

• result == FFFF

• carryOutMSB == 0

• resultMSB = 1

• TRUE: 0 < 1

33

Using Subtraction to Determine Result of slt

• So, if you’re trying to determine the answer for
• slt rd, rs, rt

• by computing
• GPR[rs] - GPR[rt]

• by using an adder to compute
• GPR[rs] + ~GPR[rt] + 1

• then, slt’s result is 1 when resultMSB and 0 otherwise

• Reminder: This is performing subtraction by adding the two’s-
complement of the value being subtracted

34

	Slide 1: Comparators
	Slide 2: Circuit to Determine If a 4-bit Value is Zero
	Slide 3: Circuit to Compare Two 4-bit Values for Equality
	Slide 4: Signed Overflow from an Adder
	Slide 5: Circuit to Detect Overflow from a 4-bit Adder
	Slide 6: Signed Overflow from an Adder when performing Subtraction
	Slide 7: Circuit to Detect Overflow from a 4-bit Subtractor
	Slide 8: MIPS sltu and slt Instructions
	Slide 9: Unsigned comparison: sltu
	Slide 10: Unsigned Comparison: 3<2 (0003 < 0002)
	Slide 11: Unsigned Comparison: 3<3 (0003 < 0003)
	Slide 12: Unsigned Comparison: 3<4 (0003 < 0004)
	Slide 13: Unsigned Comparison: 65535<0 (FFFF < 0000)
	Slide 14: Unsigned Comparison: 65535<65535 (FFFF < FFFF)
	Slide 15: Unsigned Comparison: 65535<65534 (FFFF < FFFE)
	Slide 16: Unsigned Comparison: 0<65535 (0000 < FFFF)
	Slide 17: Unsigned Comparison: 0<0 (0000 < 0000)
	Slide 18: Unsigned Comparison: 0<1 (0000 < 0001)
	Slide 19: Using Subtraction to Determine Result of sltu
	Slide 20: PDP-11 Compare Instructions
	Slide 21: PDP-11 Unsigned Branch Instructions
	Slide 22: Signed comparison: slt
	Slide 23: PDP-11 Signed Branch Instructions
	Slide 24: Patterson & Hennessy: Computer Organization & Design, MIPS Edition, 6th Ed.
	Slide 25: Signed Comparison: 3<2 (0003 < 0002)
	Slide 26: Signed Comparison: 3<3 (0003 < 0003)
	Slide 27: Signed Comparison: 3<4 (0003 < 0004)
	Slide 28: Signed Comparison: -1<0 (FFFF < 0000)
	Slide 29: Signed Comparison: -1<-1 (FFFF < FFFF)
	Slide 30: Signed Comparison: -1<-2 (FFFF < FFFE)
	Slide 31: Signed Comparison: 0<-1 (0000 < FFFF)
	Slide 32: Signed Comparison: 0<0 (0000 < 0000)
	Slide 33: Signed Comparison: 0<1 (0000 < 0001)
	Slide 34: Using Subtraction to Determine Result of slt

