
Caching
Prof. James L. Frankel

Harvard University

Version of 5:56 PM 19-Nov-2024
Copyright © 2024, 2016 James L. Frankel. All rights reserved.

2

Memory Hierarchy

• Extremely limited number of registers in CPU

• Lots of medium speed, medium price main memory

• Terabytes of slow, cheap disk storage

3

Where Does the Cache Fit In?

• Extremely limited number of registers in CPU

• Small amount of fast, expensive memory – caches

• Lots of medium speed, medium price main memory

• Terabytes of slow, cheap disk storage

• The cache takes advantage of locality of reference to make the main
memory appear to be faster

4

What is Locality of Reference?

• Future memory references (reads and writes) made by computer
programs are more likely to be:
• For locations previously referenced or

• For locations near those previously referenced

5

Taking Advantage of Locality of Reference

• Add a relatively small amount (compared to the main memory) of fast
and expensive memory that will be specially managed

• We will call this memory a cache

• Once memory has been referenced, the cache is loaded with a copy
of the value in that memory location associated with its location in
memory (the tag for that cache entry)

• Future references to that location are made to the value in the cache

6

Cache Access Terminology

• Cache Miss
• An access to a location in memory that is not in the cache

• Cache Hit
• An access to a location in memory that is in the cache

• The proportion of cache hits to total memory accesses in called the
hit rate

7

Management of the Cache

• The cache is limited in size
• Not all memory locations can be kept in the cache

• An algorithm needs to be used to determine which locations are kept in the
cache and which are ejected once the cache becomes full
• This is called the cache entry replacement policy

• Often, Least-Recently Used (LRU) is used as the replacement policy

• On a cache miss, the access is added into the cache
• Except if the location is non-cacheable

• For example, memory-mapped I/O locations would be non-cacheable

• Accesses to non-cacheable locations always cause a main memory access

Cache Implementation

• The cache is implemented using a CAM (Content-Addressable
Memory) also known of as an Associative Memory

• Cache misses must be handled by hardware
• Misses must be handled quickly

Simplified Fully-Associative Cache Schematic

Address0

Address1

Address2

Address3

Data0Address

=

=

=

=

Address

Data1

Data2

Data3

Data

Cache
Hit

Associated Data

Simplified Cache Observations

• The previous diagram doesn’t show how main memory is accessed on
a cache miss

• The diagram doesn’t show how writes are handled

• The diagram doesn’t show how the replacement policy is
implemented

• The diagram doesn’t show how the granularity of the address and the
size of the cached data are handled (i.e., all of the address may not be
held in the cache Address entries)

• The diagram doesn’t show how cache line validity is handled

Fully-Associative vs. Direct-Mapped Cache

• A fully-associative cache allows an address and its data to be placed
in any cache entry

• A direct-mapped cache allows an address and its data to be placed in
only one cache entry as determined by the most-significant bits of the
address

Simplified Direct-Mapped Cache Schematic

Block Offset Tag0

Tag1

Tag2

Tag3

Data0Index

=

Address

Data1

Data2

Data3

Data
Cache

Hit

Associated Data

Index 0

Index 1

Index 2

Index 3

Decoder

Cache Comparison

• A fully-associative cache is most flexible, but requires one comparator
for each cache line

• A direct-mapped cache is least flexible and requires only one
comparator for the whole cache
• If there is a match on the MSBs of the main memory address – even though

that cache line contains an entry from a different main memory address –
that entry will be ejected

• That is, two main memory addresses that match in their MSBs can never
reside in the cache at the same time

Set Associative Caches

• As a compromise between fully-associative and direct-mapped
caches, we can also build set associative caches

• A two-way set associative cache allows any main memory address to
be placed in one of two different cache lines

• A four-way set associative cache allows any main memory address to
be place in one of four different cache lines

Writes to Locations in the Cache

• When a write occurs to a location that is in the cache, in addition to
updating the data in the cache, the location in main memory needs to
be updated, too
• If writes to the cache immediately write to the main memory, this mechanism

is called a write-through cache

• If writes to the cache do not write the altered data to main memory until that
cache line is ejected, this mechanism is called a write-back cache
• Altered data in cache lines that has not yet been written back causes that cache line to

be labelled as dirty

Flag Bits Associated with each Cache Line

• Flag bits are associated with each cache line to retain information
about that line
• Valid vs. Invalid – valid flag

• Is the cache line filled with valid address/data?

• Clean vs. Dirty – dirty flag
• Does the cache line contain data that needs to be written back to main memory?

Wider Cache Line

• Each entry in the cache is called a cache line

• The width of a cache line need not be the same as the word size

• A wider cache line will usually match the width of the memory bus
• The memory bus width is the number of bits read on a memory read access

• When the cache line is wider than a word,
• The tag is the address of the beginning of the memory block

• Matching of the address is performed on the part of the address that is the
same across the block

Simplified Direct-Mapped Cache with Wider
Lines Schematic

Line
Offset

Block
Offset

Tag0

Tag1

Tag2

Tag3

Data0Index

=

Address

Data1

Data2

Data3

Data
Cache

Hit

Associated Data

Index 0

Index 1

Index 2

Index 3

Decoder

[3]

[2]

[1]

[0]

[0][3] [2] [1]

[0][3] [2] [1]

[0][3] [2] [1]

[0][3] [2] [1]

Separate I and D Caches

• Separate caches for I (Instruction) and D (Data) accesses adjust better
to access patterns
• This way, data accesses do not eject instructions from the cache and vice

versa

• However, the I and D caches are committed by design to work for just
instruction and data accesses, respectively
• Less cache memory is available for just I or D

• Because the ratio of how much cache is available for I and D is set at design time,
flexibility is lost at run time

• Instruction cache probably doesn’t need to be able to deal with write
updates – simplifies the design

Cache Levels

• Often there are multiple levels of caches
• Facilitates a smooth trade-off between speed, cost, and size

• Level 1 (L1) Cache
• In the processor core/chip

• Level 2 (L2) Cache
• Often off chip

• Level 3 (L3) Cache
• Often shared among cores/processors

	Slide 1: Caching
	Slide 2: Memory Hierarchy
	Slide 3: Where Does the Cache Fit In?
	Slide 4: What is Locality of Reference?
	Slide 5: Taking Advantage of Locality of Reference
	Slide 6: Cache Access Terminology
	Slide 7: Management of the Cache
	Slide 8: Cache Implementation
	Slide 9: Simplified Fully-Associative Cache Schematic
	Slide 10: Simplified Cache Observations
	Slide 11: Fully-Associative vs. Direct-Mapped Cache
	Slide 12: Simplified Direct-Mapped Cache Schematic
	Slide 13: Cache Comparison
	Slide 14: Set Associative Caches
	Slide 15: Writes to Locations in the Cache
	Slide 16: Flag Bits Associated with each Cache Line
	Slide 17: Wider Cache Line
	Slide 18: Simplified Direct-Mapped Cache with Wider Lines Schematic
	Slide 19: Separate I and D Caches
	Slide 20: Cache Levels

